相似三角形对应边成比例,这个是怎么证出来的

感觉用什么正弦余弦的方法,都是循环论证啊... 感觉用什么正弦余弦的方法,都是循环论证啊 展开
 我来答
蔷祀
高粉答主

2019-06-04 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:14.2万
展开全部

解:证明方法如下:

扩展资料

相似三角形的判定定理:

(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似。);

(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似。);

(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似。)。

参考资料来源:百度百科-相似三角形判定定理

梦色十年
高粉答主

2019-07-29 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:91.2万
展开全部

这里证明需要两个前提。

(1)毕达哥拉斯定理,直角三角形斜边的平方等于直角边平方和;

(2)就是直角三角形的面积公式s=(a*b)/2,或者矩形的面积公式是:s=a*b    

上图就是直角三角形和矩形面积的关系。

开始证明:

BA和DC都垂直于OC,且B,A分别在角DOC的两边上。

证明思路通过证明面积相等,得到:首先过B做一条平行于OC的直线,交DC于E,

容易知道角DEB是直角

下面简化下线段的表示 令OA=a,OC=c,AB=b,CD=d, DE=CD-CE=CD-AB=d-b

三角形DOC的面积=三角形BOA+矩形BECA+三角形DEB

上边的等式用代数表示为:

(c*d)/2=(a*b)/2+(c-a)*b+(c-a)(d-b)/2     

化简,等号右边后两项提出(c-a)化简为:

(c*d)/2=(a*b)/2+(c-a)(d+b)/2       

乘以2后,右边展开

c*d=a*b+c*d+c*b-ad-ab

两边同时减去c*d ,右边合并a*b 得到:

0=c*b-a*d

这样得到:a*d=c*b

两边同除以 d*c 的到

a/c=b/d  即使: OA/OC=AB/CD

扩展资料

相似三角形的判定

定理 两角分别对应相等的两个三角形相似

定理 两边成比例且夹角相等的两个三角形相似。

定理 三边成比例的两个三角形相似。

定理 一条直角边与斜边成比例的两个直角三角形相似。

根据以上判定定理,可以推出下列结论:

推论 三边对应平行的两个三角形相似。

推论 一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yjphhw
2018-08-25 · 超过35用户采纳过TA的回答
知道答主
回答量:67
采纳率:73%
帮助的人:20.8万
展开全部

这里证明需要两个前提,(1)毕达哥拉斯定理,直角三角形斜边的平方等于直角边平方和;(2)就是直角三角形的面积公式s=(a*b)/2,或者矩形的面积公式是:s=a*b    

上图就是直角三角形和矩形面积的关系。

开始证明:

BA和DC都垂直于OC,且B,A分别在角DOC的两边上。

证明思路通过证明面积相等,得到:首先过B做一条平行于OC的直线,交DC于E,

容易知道角DEB是直角

下面简化下线段的表示 令OA=a,OC=c,AB=b,CD=d, DE=CD-CE=CD-AB=d-b

三角形DOC的面积=三角形BOA+矩形BECA+三角形DEB

上边的等式用代数表示为:

(c*d)/2=(a*b)/2+(c-a)*b+(c-a)(d-b)/2     

化简,等号右边后两项提出(c-a)化简为:

(c*d)/2=(a*b)/2+(c-a)(d+b)/2        是否看出了梯形公式,哈哈

乘以2后,右边展开

c*d=a*b+c*d+c*b-ad-ab

两边同时减去c*d ,右边合并a*b 得到:

0=c*b-a*d

这样得到:a*d=c*b

两边同除以 d*c 的到

a/c=b/d  即使: OA/OC=AB/CD     直角边得证

斜边的比可以用必答格拉斯公式直接得出。 斜边得证

对于非直角三角形,可以做出高来,分成直角三角形,使用前面直角三角形的边对应成比例,得到一般性的,相似三角形的对应边成比例的结论。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zc1236789
推荐于2017-10-14
知道答主
回答量:13
采纳率:0%
帮助的人:1.8万
展开全部

                   见欧几里得《几何原本》第153页

△ADE与△ABC相似,由[V.11]得AD/AB=AE/AC

同理,若△ADE沿AB平移使D点移到B点上,  既可证得DA/BA=DE/BC

所以相似三角形对应边成比例

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
A3218nice
2012-09-01
知道答主
回答量:9
采纳率:0%
帮助的人:1.4万
展开全部
可以看成两个三角形是经过放缩形成的 每条边放缩相同倍数 就是对应成比例了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式