高三的导数函数题、急急急!!!!!!!

已知f(x)=ax3+bx2-x且当x=1和x=2时f(x)取得极值。求:1、f(x)的解析式。2、若曲线y=f(x)与g(x)=-3x-m在【-2,0】有两个不同的交点... 已知f(x)=ax3+bx2-x且当x=1和x=2时f(x)取得极值。求:1、f(x)的解析式。2、若曲线y=f(x)与g(x)=-3x-m在【-2,0】有两个不同的交点,求m的范围?
急需答案啊、第一问只要求答案、第二问要求过程哦~~~~~
展开
凉苡年
2012-08-28 · TA获得超过1269个赞
知道小有建树答主
回答量:1162
采纳率:60%
帮助的人:940万
展开全部
(1)a= -1/6 b=3/4
(2)f(x)= -1/6x^3 +3/4x^2-x
将f(x)=g(x)连理得
m=1/6x^3 -3/4x^2-2x
∵曲线y=f(x)与g(x)=-3x-m在【-2,0】有两个不同的交点
∴即 m=1/6x^3 -3/4x^2-2x=0在[-2,0]有两个解
设k(x)=1/6x^3 -3/4x^2-2x 求导得:k(x)'=1/2x²-3/2x-2
k(x)'=0时 十字相乘法可得x=-1 或x=4(不在范围内,舍去)
根据图像特征可得m’在x∈[-2,-1) 时大于0;在x∈(-1,0]时小于0
∴k(x)在(-2,-1)上递增,在(-1,0)上递减
∴k(x)当x=-1时有最大值,x∈[-2,0]
要想m=0有两根,即要m小于在[-2,0]上的最大值,就有两根
当x=-1时,k(x)=13/12
∴m<13/12
当x=-2时,k(-2)=-1/3;当x=0时,k(0)=0
k(-2)<k(0)
∴m>0
综上可得:0<m<13/12
(过程中可能有计算错误,请自己再算一遍)(只是可能啊喂~)
WY070135
2012-08-28 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2444
采纳率:100%
帮助的人:1718万
展开全部
解:

∵f(x)=ax^3+bx^2-x
∴f'(x)=3ax^2+2bx-1
∵当x=1和x=2时,f(x)取得极值
∴f'(1)=0,f'(2)=0
即3a+2b-1=0,12a+4b-1=0
解得a=-1/6,b=3/4
∴f(x)=-1/6x^3+3/4x^2-x


∵曲线y=f(x)与g(x)=-3x-m在[-2,0]有两个不同的交点
即f(x)-g(x)=0在[-2,0]有两个不同的实数解
=>1/6x^3-3/4x^2-2x-m=0在[-2,0]有两个不同的实数解
令F(x)=1/6x^3-3/4x^2-2x-m
则F'(x)=1/2x^2-3/2x-2=1/2(x+1)(x-4)
令F'(x)=0,得x=-1或x=4
∴当x∈[-2,-1]时,F'(x)>0,F(x)单调递增;
当x∈[-1,0]时,F'(x)<0,F(x)单调递减.
∴F(-2)≤0 ===>>>m≥-1/3
F(-1)>0 ===>>>m<13/12
F(0)≤0 ===>>>m≥0
∴0≤m<13/12
∴m的取值范围是[0,13/12).
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
chen525955998
2012-08-28 · 超过11用户采纳过TA的回答
知道答主
回答量:42
采纳率:0%
帮助的人:25.4万
展开全部
(1)f(x)=-1/6x^3+3/4x^2-x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式