已知函数y=f(x)周期为2,当x∈[0,2],f(x)=(x-1)^2,如果g(x)=f(x)-log5lx-1l,y=f(x)
已知函数y=f(x)周期为2,当x∈[0,2],f(x)=(x-1)^2,如果g(x)=f(x)-log5lx-1l,y=f(x)的零点之和是????...
已知函数y=f(x)周期为2,当x∈[0,2],f(x)=(x-1)^2,如果g(x)=f(x)-log5lx-1l,y=f(x)的零点之和是????
展开
展开全部
先根据函数的周期性画出函数y=f(x)的图象,以及y=log5|x-1|的图象,结合图象当x>6时,y=log5|x-1|>1,此时与函数y=f(x)无交点,即可判定函数g(x)=f(x)-log5|x-1||的零点个数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
共有8个根,分别关于x=1对称,x1+x2x+x3+x4+x5+x6+x7+x8=4(x1+x2)=4*2=8
追问
为何分别关于x=1对称
追答
你的题目"y=f(x)的零点之和是????"有误。
函数f(x)=(x-1)^2抛物线的对称轴是x=1,以2为周期,画出图像;图像关于y轴对称的偶函数y=log5lxl向右平移一个单位得到函数y=log5lx-1l,则y=log5lx-1l关于x=1对称;函数f(x)=(x-1)^2与函数y=log5lx-1l的交点横坐标为g(x)=0的零点,当x>6时,y=log5|x-1|>1,此时函数f(x)=(x-1)^2与函数y=log5lx-1l图像无交点,两函数在[1,6]上有4个交点,由对称性知它们在[-4,1]上也有4个交点,设这八个零点从左到右分别是x1,x2x,x3,x4,x5,x6,x7,x8,则x1+x2x+x3+x4+x5+x6+x7+x8=4(x4+x5)=4*2=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询