2个回答
展开全部
1、性质
等差数列:是从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
等比数列:是从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
2、计算公式
等差数列:如果一个等差数列的首项为a1,公差为d,那么该等差数列第n项的表达式为:an=a1+d(n-1)。
等比数列:通项公式通过定义式叠乘而来,通项公式为:
3、特点
等差数列:和=(首项+末项)×项数÷2;项数=(末项-首项)÷公差+1;首项=2x和÷项数-末项或末项-公差×(项数-1);末项=2x和÷项数-首项;末项=首项+(项数-1)×公差;2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
等比数列:若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1);在等比数列中,首项A1与公比q都不为零。
参考资料来源:百度百科-等差数列
参考资料来源:百度百科-等比数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询