计算:(1--1/2^2)*(1--1/3^2)*(1--1/4^2)*....*(1--1/2010^2)*(1--1/2011^2)
2个回答
展开全部
(1-1/2²)(1-1/3²)...(1-1/2010²)(1-1/2011²)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)...(1+1/2010)(1-1/2010)(1+1/2011)(1-1/2011)
=(3/2)(1/2)(4/3)(2/3)...(2011/2010)(2009/2010)(2012/2011)(2010/2011)
=[(3/2)(4/3)...(2012/2011][(1/2)(2/3)...(2010/2011)]
=[(3×4×...×2012)/(2×3×...×2011)][(1×2×...×2010)/(2×3×...×2011)]
=(2012/2)(1/2011)
=1006/2011
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)...(1+1/2010)(1-1/2010)(1+1/2011)(1-1/2011)
=(3/2)(1/2)(4/3)(2/3)...(2011/2010)(2009/2010)(2012/2011)(2010/2011)
=[(3/2)(4/3)...(2012/2011][(1/2)(2/3)...(2010/2011)]
=[(3×4×...×2012)/(2×3×...×2011)][(1×2×...×2010)/(2×3×...×2011)]
=(2012/2)(1/2011)
=1006/2011
展开全部
(1-1/2²)(1-1/3²)...(1-1/2010²)(1-1/2011²)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)...(1+1/2010)(1-1/2010)(1+1/2011)(1-1/2011)
=(3/2)(1/2)(4/3)(2/3)...(2011/2010)(2009/2010)(2012/2011)(2010/2011)
=[(3/2)(4/3)...(2012/2011][(1/2)(2/3)...(2010/2011)]
=[(3×4×...×2012)/(2×3×...×2011)][(1×2×...×2010)/(2×3×...×2011)]
=(2012/2)(1/2011)
=1006/2011
是不是?
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)...(1+1/2010)(1-1/2010)(1+1/2011)(1-1/2011)
=(3/2)(1/2)(4/3)(2/3)...(2011/2010)(2009/2010)(2012/2011)(2010/2011)
=[(3/2)(4/3)...(2012/2011][(1/2)(2/3)...(2010/2011)]
=[(3×4×...×2012)/(2×3×...×2011)][(1×2×...×2010)/(2×3×...×2011)]
=(2012/2)(1/2011)
=1006/2011
是不是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询