已知a²+b²+c²-2(a+b+c)+3=0, 则a³+b³+c³-3abc的值是
展开全部
∵a²+b²+c²-2(a+b+c)+3=0
∴a²+b²+c²-2a-2b-2c+3=0
(a²-2a+1)+(b²-2b+1)+(c²-2c+1)=0
(a-1)²+(b-1)²+(c-1)²=0
由已知得:(a-1)²≥0 (b-1)²≥0 (c-1)²≥0
∴a = 0,b = 0,c = 0
∴a³+b³+c³-3abc=1+1+1-3=0
刚写完LZ就采纳了别人的= =
LZ也是初二吗~
∴a²+b²+c²-2a-2b-2c+3=0
(a²-2a+1)+(b²-2b+1)+(c²-2c+1)=0
(a-1)²+(b-1)²+(c-1)²=0
由已知得:(a-1)²≥0 (b-1)²≥0 (c-1)²≥0
∴a = 0,b = 0,c = 0
∴a³+b³+c³-3abc=1+1+1-3=0
刚写完LZ就采纳了别人的= =
LZ也是初二吗~
追问
恩呢 开学初三 因为基础不好 所以 正在补课··················
追答
我也是升初三= =!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:a²+b²+c²-2a-2b-2c+3=0
﹙a²-2a+1﹚+﹙b²-2b+1﹚+﹙c²-2c+1﹚=0
﹙a-1﹚²+﹙b-1﹚²+﹙c²-1﹚²=0
∵ ﹙a-1﹚²≥0, ﹙b-1﹚²≥0, ﹙c-1﹚²≥0
∴ a-1=0, a=1
b-1=0, b=1
c-1=0, c=1
∴ a³+b³+c³-3abc=1+1+1-3=0.
﹙a²-2a+1﹚+﹙b²-2b+1﹚+﹙c²-2c+1﹚=0
﹙a-1﹚²+﹙b-1﹚²+﹙c²-1﹚²=0
∵ ﹙a-1﹚²≥0, ﹙b-1﹚²≥0, ﹙c-1﹚²≥0
∴ a-1=0, a=1
b-1=0, b=1
c-1=0, c=1
∴ a³+b³+c³-3abc=1+1+1-3=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
条件可整理成(a-1)²+(b-1)²+(c-1)²=0
故为a=b=c=1
原式=1³+1³+1³-3×1×1×1=0
故为a=b=c=1
原式=1³+1³+1³-3×1×1×1=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询