3个回答
展开全部
PQ=1/2BP
证明:因为三角形ABC是等边三角形
所以AB=AC
角BAD=角C=60度
因为AD=CE
所以三角形ABD和三角形CAE全等(SAS)
所以角CAE=角ABD
因为角BPQ=角ABD+角BAP
所以角BPQ=角BAP+角CAE=角BAC=60度
所以角BPQ=60度
因为BQ垂直AE于Q
所以角BQP=90度
因为角BQP+角BPQ+角PBQ=180度
所以角PBQ=30度
在直角三角形BQP中,角BQP=90度,角PBQ=30度
所以PQ=1/2PB
证明:因为三角形ABC是等边三角形
所以AB=AC
角BAD=角C=60度
因为AD=CE
所以三角形ABD和三角形CAE全等(SAS)
所以角CAE=角ABD
因为角BPQ=角ABD+角BAP
所以角BPQ=角BAP+角CAE=角BAC=60度
所以角BPQ=60度
因为BQ垂直AE于Q
所以角BQP=90度
因为角BQP+角BPQ+角PBQ=180度
所以角PBQ=30度
在直角三角形BQP中,角BQP=90度,角PBQ=30度
所以PQ=1/2PB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵△ABC是等边三角形
∴AB=AC,∠BAD=∠ACE=60°,
∵AD=CE
∴△ABD≌△ACE,
∴∠ABD=∠CAE,
∴∠BPQ=∠ABD+∠BAP,
=∠CAE+∠BAP,
=∠BAC=60°.
∵BQ⊥AE,即∠BQP=90°
∴∠PBQ=30°
∴PQ=1/2PB
∴AB=AC,∠BAD=∠ACE=60°,
∵AD=CE
∴△ABD≌△ACE,
∴∠ABD=∠CAE,
∴∠BPQ=∠ABD+∠BAP,
=∠CAE+∠BAP,
=∠BAC=60°.
∵BQ⊥AE,即∠BQP=90°
∴∠PBQ=30°
∴PQ=1/2PB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询