在△ABC中,求证:(a^2-b^2)/c^2=sin(A-B)/sinC 10
展开全部
a/c=sinA/sinC,b/c=sinB/sinC,
(a^2-b^2)/c^2=(sina)^2-(sinb)^2)/(sinc)^2
(sina)^2=(1-cos2a)/2,(sinb)^2=(1-cos2b)/2
(sina)^2-(sinb)^2=(cos2b-cos2a)/2=sin(a-b)sin(b+a)=sin(a-b)sinc
(a^2-b^2)/c^2=(sina)^2-(sinb)^2)/(sinc)^2=sin(A-B)/sinC
(a^2-b^2)/c^2=(sina)^2-(sinb)^2)/(sinc)^2
(sina)^2=(1-cos2a)/2,(sinb)^2=(1-cos2b)/2
(sina)^2-(sinb)^2=(cos2b-cos2a)/2=sin(a-b)sin(b+a)=sin(a-b)sinc
(a^2-b^2)/c^2=(sina)^2-(sinb)^2)/(sinc)^2=sin(A-B)/sinC
追问
呵,我问的是和差化机!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询