
已知圆C1:x^2+y^2+6x-4=0和圆C2:x^2+y^2+6y-28=0相交于A,B两点,求圆心在直线x-y-4=0上,且经过
已知圆C1:x^2+y^2+6x-4=0和圆C2:x^2+y^2+6y-28=0相交于A,B两点,求圆心在直线x-y-4=0上,且经过A,B两点的圆C方程。详细过程,急!...
已知圆C1:x^2+y^2+6x-4=0和圆C2:x^2+y^2+6y-28=0相交于A,B两点,求圆心在直线x-y-4=0上,且经过A,B两点的圆C方程。详细过程,急!!!
展开
1个回答
展开全部
设圆C方程为x^2+y^2+6x-4+k(x^2+y^2+6y-28)=0;(k不等于-1)
则圆心坐标为:x=-3/(1+k),y=-3k/(1+k);
代入直线x-y-4=0得到:3(k-1)/(k+1)-4=0;
解得:k=-7;
代入圆C的方程得:x^2+y^2-x+7y-32=0。
则圆心坐标为:x=-3/(1+k),y=-3k/(1+k);
代入直线x-y-4=0得到:3(k-1)/(k+1)-4=0;
解得:k=-7;
代入圆C的方程得:x^2+y^2-x+7y-32=0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询