导数是复合函数,如何求原函数

比如导数为lnx/x原函数或者根号下1-cosx... 比如导数为lnx/x 原函数
或者根号下1-cosx
展开
 我来答
旋转的烤翅
2008-03-13 · TA获得超过288个赞
知道小有建树答主
回答量:81
采纳率:0%
帮助的人:42.7万
展开全部
我猜你问的是这两个函数的原函数?

lnx/x = (1/x)*lnx, 原函数是((lnx)^2)/2 +C。这个用第一换元积分可以做。

设x=2t,则有cosx=cos(2t)=1-sin(t))^2,即1-cosx=2(sin(t))^2。
因此你的根号下1-cosx即为|(2^(1/2))*sint|,其原函数为(2^(1/2))*cost+C=(2^(1/2))*cos(x/2) +C, 视t的取值范围前面要加正负号。 这个是用第二换元积分。
togoice
2008-03-03 · 超过52用户采纳过TA的回答
知道答主
回答量:246
采纳率:0%
帮助的人:178万
展开全部
就是复合函数求导
第一个等于
[(1/X)*X-lnX]/X的平方
第二个=-(1/2)sinX/根号下(1-cosX)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
登兴有谯水
2020-03-30 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:989万
展开全部
举例说明:
设有复合函数:
u(x)
=
u[v(x)]
(1)
其中:
u(v)
=
v^2
(2)
v(x)
=
e^x
(3)
实际上
u(x)
=
e^(2x)
(4)
复合函数求导:du(x)/dx
=
(du/dv)(dv/dx)
=
(2v)(e^x)
=
(2e^x)(e^x)
即:
du(x)/dx
=
2e^(2x)
(5)
那么已知复合函数的导数u'(x)
,可以通过
对(5)式积分的方法求出它的原函数u(x),只是多出一个积分常数c:
u(x)
=

2e^(2x)dx
=

e^(2x)d(2x)
=
e^(2x)
+
c
=
(e^x)^2
+c
//:
采用变量替换:v(x)=e^x
u(v)=v^2,回代
=
u[v(x)]+c
(1)
=
e^(2x)+c
(4)
(是这个意思吗?)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式