证明:定义在对称区间(-l,l)上任意函数可表示为一个奇函数与一个偶函数的和。
4个回答
展开全部
证明:
设f(x)为定义在(-l,l)上的任意一个函数,令:h(x) =[f(x)+f(-x)]/2。
则h(-x)=[f(-x)+f(-(-x))]/2=[f(-x)+f(x)]/2= h(x)所以 h(x)为偶函数。
令:g(x) =[f(x)-f(-x)]/2g(-x)=[f(-x)-f(-(-x))]/2= -[f(x)-f(-x)]/2= -g(x)所以g(x)为奇函数。
而 f(x)=[f(x)+f(-x)]/2 + [f(x)-f(-x)]/2 =h(x)+g(x)。
所以f(x)可以表示为一个奇函数与一个偶函数的和。
扩展资料:
奇函数偶函数的运算法则:
(1) 两个偶函数相加所得的和为偶函数。
(2) 两个奇函数相加所得的和为奇函数。
(3) 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4) 两个偶函数相乘所得的积为偶函数。
(5) 两个奇函数相乘所得的积为偶函数。
(6) 一个偶函数与一个奇函数相乘所得的积为奇函数。
展开全部
证明:∵ 任意一个奇函数可表示为:[f(x)-f(-x)]/2,
任意一个偶函数可表示为:[(f(x)+f(-x)]/2,
∴ 对称区间(-l,l)上任意函数:f(x)=[f(x)-f(-x)]/2 + [f(x)+f(-x)]/2 即得证。
任意一个偶函数可表示为:[(f(x)+f(-x)]/2,
∴ 对称区间(-l,l)上任意函数:f(x)=[f(x)-f(-x)]/2 + [f(x)+f(-x)]/2 即得证。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:设f(x)为定义在(-I,I)上的任意一个函数,令
h(x) =[f(x)+f(-x)]/2 '这里为什么要这样做,依据什么原理?
h(-x)=[f(-x)+f(-(-x))]/2=[f(-x)+f(x)]/2= h(x)
所以 h(x)为偶函数。
令 g(x) =[f(x)-f(-x)]/2
g(-x)=[f(-x)-f(-(-x))]/2= -[f(x)-f(-x)]/2= -g(x)
所以g(x)为奇函数。
而 f(x)=[f(x)+f(-x)]/2 + [f(x)-f(-x)]/2 =h(x)+g(x)
所以f(x)可以表示为一个奇函数与一个偶函数的和
h(x) =[f(x)+f(-x)]/2 '这里为什么要这样做,依据什么原理?
h(-x)=[f(-x)+f(-(-x))]/2=[f(-x)+f(x)]/2= h(x)
所以 h(x)为偶函数。
令 g(x) =[f(x)-f(-x)]/2
g(-x)=[f(-x)-f(-(-x))]/2= -[f(x)-f(-x)]/2= -g(x)
所以g(x)为奇函数。
而 f(x)=[f(x)+f(-x)]/2 + [f(x)-f(-x)]/2 =h(x)+g(x)
所以f(x)可以表示为一个奇函数与一个偶函数的和
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如果命题成立 则不妨设f(x)= g(x)+k(x) (1)其中g(x)为奇函数,k(x)为偶函数
而f(-x)= g(-x)+k(-x)=-g(x)+k(x) (2)
由(1)(2)得 g(x)=[f(x)-f(-x)]/2 k(x)=[f(x)+f(-x)]/2
易证g(x)为奇函数,k(x)为偶函数
所以命题成立
而f(-x)= g(-x)+k(-x)=-g(x)+k(x) (2)
由(1)(2)得 g(x)=[f(x)-f(-x)]/2 k(x)=[f(x)+f(-x)]/2
易证g(x)为奇函数,k(x)为偶函数
所以命题成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询