线性代数中,矩阵的伴随矩阵和代数余子式之间有什么运算关系

考研的书上看到的,但没写出来... 考研的书上看到的,但没写出来 展开
甜美志伟
高粉答主

推荐于2019-10-12 · 每个回答都超有意思的
知道答主
回答量:9
采纳率:100%
帮助的人:6308
展开全部

运算关系:矩阵的伴随矩阵和代数余子式之间一一对应。

验证:

以三阶方阵为例,运算如下:

A=

a11  a12  a13

a21  a22  a23

a31  a32  a33

则A=

A11  A21  A31A12  A22  A32

A13  A23  A33

其中Aij是aij对应的代数余子式。

扩展资料:

现代线性代数

现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。

尽管许多人不容易想象n 维空间中的向量,这样的向量(即n 元组)用来表示数据非常有效。由于作为 n 元组,向量是n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。

当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。

作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。

一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。

向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。

如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。

我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。

参考资料来源:百度百科--线性代数

清时芳后裳
2020-03-04 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:1077万
展开全部
运算关系:矩阵的伴随矩阵和代数余子式之间一一对应。
验证:
以三阶方阵为例,运算如下:
A=
a11
a12
a13
a21
a22
a23
a31
a32
a33
则A=
A11
A21
A31A12
A22
A32
A13
A23
A33
其中Aij是aij对应的代数余子式。

扩展资料:
现代线性代数
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。
尽管许多人不容易想象n 维空间中的向量,这样的向量(即n 元组)用来表示数据非常有效。由于作为 n 元组,向量是n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用
8
维向量来表示
8
个国家的国民生产总值(GNP)。
当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的
GNP。这里,每个国家的
GNP
都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。
一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。
如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。
参考资料来源:百度百科--线性代数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丘冷萱Ad
推荐于2017-12-16 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3971万
展开全部
以三阶方阵为例,高阶的类似
A=
a11 a12 a13
a21 a22 a23
a31 a32 a33
则A*=
A11 A21 A31
A12 A22 A32
A13 A23 A33

其中Aij是aij对应的代数余子式

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
aiskw1xnt
2012-09-11 · TA获得超过1605个赞
知道小有建树答主
回答量:671
采纳率:0%
帮助的人:526万
展开全部
你问的是不是那条公式,书上有的,好像要先求行列式。不过这里打不出来
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式