关于x的一元二次方程mx²-4x+4=0,x²-4mx+4m²-4m-5=0(m∈Z),求根均为整数的充要条件

我是V哥哥
2012-09-11 · TA获得超过9901个赞
知道大有可为答主
回答量:1567
采纳率:66%
帮助的人:1419万
展开全部
解:(解题思路,先根据条件关于x的一元二次方程mx²-4x+4=0,x²-4mx+4m²-4m-5=0的根均为整数,来求出m的值,之后再证明是否是充要条件即可。)
因为方程mx²-4x+4=0是关于x的一元二次方程,则m≠0
设x1,x2为该方程的两个根,则根据韦达定理可得:
x1+x2=4/m
x1x2=4/m
因为根为整数,那么4/m必然为整数,则有m必然为4的约数,则m=±1, ±2, ±4
将m=±1, ±2, ±4依次带入方程mx²-4x+4=0检验得m=1,2,4满足方程mx²-4x+4=0根为整数的条件。
再将m=1,2,4分别代入方程x²-4mx+4m²-4m-5=0检验可知:
m=1满足方程x²-4mx+4m²-4m-5=0.根为整数的条件

从以上计算过程来看,由方程所有根都是整数得出m=1,显然m=1为方程所有根均为整数的充分条件。
下面来看m=1是否也是两个方程所有根为整数的必要条件。
必要条件即:已知m=1,则方程mx²-4x+4=0,x²-4mx+4m²-4m-5=0的根都为整数。
当m=1时,两个方程即:x^2-4x+4=0,x^2-4x-5=0
易求得两个方程的根分别为:x=2和x=5或-1,所有根均为整数。
必要性获证。

综上可知:m=1是关于x的一元二次方程mx²-4x+4=0,x²-4mx+4m²-4m-5=0(m∈Z)根为整数的充要条件。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式