1个回答
展开全部
1、(Ⅰ)首先对f(x)求导,将a= 代入,令f′(x)=0,解出后判断根的两侧导函数的符号即可.
(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.解答:解:对f(x)求导得
f′(x)=
(Ⅰ)当a= 时,若f′(x)=0,则4x2-8x+3=0,解得
结合①,可知
所以, 是极小值点, 是极大值点.(自己算)
(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,
因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
2、若f(x)为R上的单调函数,则f‘(x)在R上不变号,结合f’(x)与条件a>0,知ax2-2a+1>=0
在R上恒成立,因此,△=4a2-4a<=0,所以0<a<1
(Ⅱ)因为a>0,所以f(x)为R上为增函数,f′(x)≥0在R上恒成立,转化为二次函数恒成立问题,只要△≤0即可.解答:解:对f(x)求导得
f′(x)=
(Ⅰ)当a= 时,若f′(x)=0,则4x2-8x+3=0,解得
结合①,可知
所以, 是极小值点, 是极大值点.(自己算)
(Ⅱ)若f(x)为R上的单调函数,则f′(x)在R上不变号,
结合①与条件a>0知ax2-2ax+1≥0在R上恒成立,
因此△=4a2-4a=4a(a-1)≤0,由此并结合a>0,知0<a≤1.
2、若f(x)为R上的单调函数,则f‘(x)在R上不变号,结合f’(x)与条件a>0,知ax2-2a+1>=0
在R上恒成立,因此,△=4a2-4a<=0,所以0<a<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询