曲线y=xln(e+1/x)(x>0)的斜渐近线方程为(求详细点)
2个回答
展开全部
设斜渐近线为y=ax+b
a=lim[x→∞] y/x=lim[x→∞] ln(e+1/x)=1
b=lim[x→∞] [xln(e+1/x)-ax]
=lim[x→∞] [xln(e+1/x)-x]
=lim[x→∞] [xln(e+1/x)-xlne]
=lim[x→∞] xln[(e+1/x)/e]
=lim[x→∞] xln[1+1/(ex)]
等价无穷小代换
=lim[x→∞] x/(ex)
=1/e
因此渐近线为:y=x + 1/e
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
a=lim[x→∞] y/x=lim[x→∞] ln(e+1/x)=1
b=lim[x→∞] [xln(e+1/x)-ax]
=lim[x→∞] [xln(e+1/x)-x]
=lim[x→∞] [xln(e+1/x)-xlne]
=lim[x→∞] xln[(e+1/x)/e]
=lim[x→∞] xln[1+1/(ex)]
等价无穷小代换
=lim[x→∞] x/(ex)
=1/e
因此渐近线为:y=x + 1/e
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
展开全部
斜渐近线的斜率为:
k = lim {x->无穷大} y/x
= lim {x->无穷大} ln(e+1/x)
= 1
再看lim {x->无穷大} (y-kx)
=lim {x->无穷大} xln(e+1/x) - x
=lim {x->无穷大} x [ln(e+1/x) - 1]
=lim {x->无穷大} x {ln[(e+1/x)/e]}
=lim {x->无穷大} x ln(1+1/ex)
令1/x=t
=lim {t->0} [ln(1+t/e)] / t
=1/e
所以斜渐近线是y=x+1/e
k = lim {x->无穷大} y/x
= lim {x->无穷大} ln(e+1/x)
= 1
再看lim {x->无穷大} (y-kx)
=lim {x->无穷大} xln(e+1/x) - x
=lim {x->无穷大} x [ln(e+1/x) - 1]
=lim {x->无穷大} x {ln[(e+1/x)/e]}
=lim {x->无穷大} x ln(1+1/ex)
令1/x=t
=lim {t->0} [ln(1+t/e)] / t
=1/e
所以斜渐近线是y=x+1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询