若半径为r的圆C,x^2+y^2+Dx+Ey+F=0,的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D^2+E^2=F^2,且F>0
展开全部
解:(1)圆心r²=D²/4+E²/4-F>0,把D²+E²=F²代入,得F²/4-F>0,解得F<0(舍去,题目要求F>0),F>4。
(2)把圆心(-D/2,-E/2)代入点到直线距离公式,得d=|-D²/2-E²/2+F|/√(D²+E²),把D²+E²=F²代入,得d=|F²-2F|/|2F|,所以d²=(F²-2F)²/4F²,r²=F²/4-F,所以d²-r²=[(F²-2F)²-F²(F²-4F)]/4F²=1,是定值。
(2)把圆心(-D/2,-E/2)代入点到直线距离公式,得d=|-D²/2-E²/2+F|/√(D²+E²),把D²+E²=F²代入,得d=|F²-2F|/|2F|,所以d²=(F²-2F)²/4F²,r²=F²/4-F,所以d²-r²=[(F²-2F)²-F²(F²-4F)]/4F²=1,是定值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询