若圆x2+y2-4x-4y-10=0上至少有三个点到直线ax+by=0的距离为2√2,求直线倾斜角取值范围。 20
2个回答
展开全部
圆x2+y2-4x-4y-10=0
即(x-2)²+(y-2)²=18
圆心C(2,2),半径r=3√2
圆上至少有三个点到直线ax+by=0
的距离为2√2
那么圆心C到直线的距离≤√2
即|2a+2b|/√(a²+b²)≤√2
∴(2a+2b)²≤2(a²+b²)
∴a²+b²+4ab≤0
∴(a/b)²+4(a/b)+1≤0
∴-2-√3≤a/b≤-2+√3
∴直线斜率k=-a/b
∴tan15º=2-√3≤k≤2+√3=tan75º
∴倾斜角范围是[15º,75º]
即(x-2)²+(y-2)²=18
圆心C(2,2),半径r=3√2
圆上至少有三个点到直线ax+by=0
的距离为2√2
那么圆心C到直线的距离≤√2
即|2a+2b|/√(a²+b²)≤√2
∴(2a+2b)²≤2(a²+b²)
∴a²+b²+4ab≤0
∴(a/b)²+4(a/b)+1≤0
∴-2-√3≤a/b≤-2+√3
∴直线斜率k=-a/b
∴tan15º=2-√3≤k≤2+√3=tan75º
∴倾斜角范围是[15º,75º]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询