初三几何证明题,竞赛题,关于平行四边形的,希望高手指点

设点P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC垂直... 设点P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC垂直BD,且BC=BD。 展开
匿名用户
2012-09-16
展开全部

 

解:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,
∴CEPF是矩形(三角都是直角的四边形是矩形),
∴OP=OF,∠PEF+∠3=90°,
∴∠1=∠3,
∵PG⊥EF,
∴∠PEF+∠2=90°,
∴∠2=∠3,
∴∠1=∠2,
∵△ABC是等腰直角三角形,
∴∠A=∠ABC=45°,
∴∠APE=∠BPF=45°,
∴∠APE+∠2=∠BPF+∠1,
即∠APG=∠CPB,
∵∠BPD=∠APG,
∴∠BPD=∠CPB,
又∵PC=PD,PB是公共边,
∴△PBC≌△PBD(SAS),
∴BC=BD,∠PBC=∠PBD=45°,
∴∠PBC+∠PBD=90°,
即BC⊥BD.
故证得:BC⊥BD,且BC=BD.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式