展开全部
两个重要极限:
设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都∃N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn} 收敛于a。
如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥a,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。
扩展资料:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”
3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
展开全部
高等数学极限中有“两个重要极限”的说法,指的是
sinX/x →1( x→0 ),
与 (1+1/x)^x→e^x( x→∞)。
另外,关于等价无穷小,有
sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)
~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),
1-cosx ~ x^2/2( x→0)。
sinX/x →1( x→0 ),
与 (1+1/x)^x→e^x( x→∞)。
另外,关于等价无穷小,有
sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)
~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),
1-cosx ~ x^2/2( x→0)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sinx---x, tanx---x, arctanx---x, arcsinx---x, 1-cosx---x^2/2 , e^x-1---x, a^x-1---xlna, ln(1+X)---x, (1+x)^a-1---ax loga(1+x)--x/lna(log里面a是底数)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-09-20
展开全部
lim x→0 (sinx)=x;lim x→0 ((1+x)^(1/x)))=e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐于2017-11-25
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |