设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1

丘冷萱Ad
2012-09-19 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3989万
展开全部
证明:由积分中值定理,存在η∈(0,1/2)使
2∫[0→1/2] xf(x) dx=2*ηf(η)*(1/2)=ηf(η)=f(1)
令g(x)=xf(x),则g(η)=ηf(η)=f(1),g(1)=f(1)
因此g(x)在[η,1]内满足罗尔中值定理条件,
即存在ξ∈(η,1),使g'(ξ)=0,且g'(x)=f(x)+xf '(x)
因此:g'(ξ)=0即:f(ξ)+ξf '(ξ)=0。证毕

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
nsjiang1
2012-09-19 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3872万
展开全部
是证明f(ξ)+ξf'(ξ)=1 ?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式