求微分方程y"-y=e^x的通解

 我来答
mscheng19
2012-09-20 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2255万
展开全部
y''-y=0的特征方程为a^2-1=0,解是a=1或a=-1,
因此通解是y=Ce^x+De^(-x)。
y''-y=e^x的特解设为y=e^x(ax),
则y'=ae^x(x+1),y''=ae^x(x+2),
代入方程得2ae^x=e^x,于是a=0.5,
特解是y=0.5xe^x。
最后得微分方程的通解是
y=Ce^x+De^(-x)+0.5xe^x。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式