设函数y=y(x)由方程y=f(x^2+y^2)+f(x+y)确定,且y(0)=2,f(x)是可导函数,f'(2)=1/2,f'(4)=1,则f'(0)的值

钟馗降魔剑2
2012-09-23 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1万
采纳率:74%
帮助的人:3866万
展开全部
y=f(x²+y²)+f(x+y)
y'=f'(x²+y²)×(x²+y²)'+f'(x+y)×(x+y)'
=(2x+2yy')f'(x²+y²)+(1+y')f'(x+y)
当x=0时,y=2,那么y'=(0+4y')f'(4)+(1+y')f'(2)

而f'(4)=1,f'(2)=1/2,所以y'=4y'×1+(1+y')×(1/2)
即:y'=4y'+1/2+y'/2,所以y'=-1/7,即f'(0)=-1/7
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式