求拉氏变换微分定理的证明全过程
3个回答
展开全部
拉普拉斯变换:若f(t)的拉普拉斯变换为F(s),则L{f '(t)}=sF(s)-f(0)
证明:
左边=L{f '(t)}
=∫[0→+∞]f '(t)e^(-st) dt下面分部积分
=∫[0→+∞]e^(-st) d(f(t))
=f(t)e^(-st)|[0→+∞]+s∫[0→+∞]f(t)e^(-st) dt
=-f(0)+sF(s)
=右边
发展历史
法国数学家、天文学家拉普拉斯(1749─1827年),主要研究天体力学和物理学。他认为数学只是一种解决问题的工具,但在运用数学时创造和发展了许多新的数学方法。
1812年拉普拉斯在《概率的分析理论》中总结了当时整个概率论的研究,论述了概率在选举、审判调查、气象等方面的应用,并导入“拉普拉斯变换”。拉普拉斯变换导致了后来海维塞德发现运算微积分在电工理论中的应用。
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
拉普拉斯变换:若f(t)的拉普拉斯变换为F(s),则L{f '(t)}=sF(s)-f(0)
证明:
左边=L{f '(t)}
=∫[0→+∞] f '(t)e^(-st) dt 下面分部积分
=∫[0→+∞] e^(-st) d(f(t))
=f(t)e^(-st)|[0→+∞] + s∫[0→+∞] f(t)e^(-st) dt
=-f(0)+sF(s)
=右边
如果解决了问题,请采纳。
证明:
左边=L{f '(t)}
=∫[0→+∞] f '(t)e^(-st) dt 下面分部积分
=∫[0→+∞] e^(-st) d(f(t))
=f(t)e^(-st)|[0→+∞] + s∫[0→+∞] f(t)e^(-st) dt
=-f(0)+sF(s)
=右边
如果解决了问题,请采纳。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高数丢了5年,对不起,真的帮不了你了
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |