ln(ax+b)的n阶导的公式是什么?
2个回答
展开全部
y=ln(ax+b) =>y(0)= lnb
y'= a/(ax+b) =>y'(0)/1! = a/b
y''=-a^2/(ax+b)^2 =>y''(0)/2! = -(1/2)(a/b)^2
y'''=2a^3/(ax+b)^3 =>y'''(0)/3! = (1/3)(a/b)^3
y^(n) = (-1)^(n-1).(n-1)!a^n/(ax+b)^n =>y^(n)(0)/n! = [(-1)^(n-1)/n](a/b)^n
y=ln(ax+b)
=lnb +(a/b)x -(1/2)(a/b)^2.x^2+... + [(-1)^(n-1)/n](a/b)^n.x^n+...
y'= a/(ax+b) =>y'(0)/1! = a/b
y''=-a^2/(ax+b)^2 =>y''(0)/2! = -(1/2)(a/b)^2
y'''=2a^3/(ax+b)^3 =>y'''(0)/3! = (1/3)(a/b)^3
y^(n) = (-1)^(n-1).(n-1)!a^n/(ax+b)^n =>y^(n)(0)/n! = [(-1)^(n-1)/n](a/b)^n
y=ln(ax+b)
=lnb +(a/b)x -(1/2)(a/b)^2.x^2+... + [(-1)^(n-1)/n](a/b)^n.x^n+...
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询