如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位长度,记平移后的对应
展开全部
如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.
(1)当x=4时,求四边形ABED的周长;
(2)当x为何值时,△BED是等腰三角形?
勾股定理;等腰三角形的性质;轴对称的性质;平移的性质.
分析:(1)根据轴对称的性质,求得AD,DE的长,然后即可求四边形ABED的周长
(2)分两种情况:一是,当BE=ED=4时,利用轴对称的性质可得x的值,二是当BD=ED=4时,利用勾股定理可求得x的值.
解答:解:(1)将△ABC沿AC边所在直线向右平移x个单位,当x=4时,
即AD=4,又因为平移后的对应三角形为△DEF,
所以,AB=AD=DE=BE=4,
所以四边形ABED的周长为16.
(2)当BE=ED=4时,x=4
当BE=BD=x时,由∠CDE=∠BDE,BC⊥DE,
利用轴对称的性质可得5-x=x,
x=2.5,
当BD=ED=4时,利用勾股定理得(125)2+(x2)2=42,
x=325.
答:(1)当x=4时,求四边形ABED的周长为16;(2)当x为325或2.5或4时,△BED是等腰三角形.
点评:此题主要考查勾股定理,轴对称的性质,等腰三角形的性质,平移的性质等多个知识点,此题涉及到的知识点较多,综合性较强,属于中档题.
(1)当x=4时,求四边形ABED的周长;
(2)当x为何值时,△BED是等腰三角形?
勾股定理;等腰三角形的性质;轴对称的性质;平移的性质.
分析:(1)根据轴对称的性质,求得AD,DE的长,然后即可求四边形ABED的周长
(2)分两种情况:一是,当BE=ED=4时,利用轴对称的性质可得x的值,二是当BD=ED=4时,利用勾股定理可求得x的值.
解答:解:(1)将△ABC沿AC边所在直线向右平移x个单位,当x=4时,
即AD=4,又因为平移后的对应三角形为△DEF,
所以,AB=AD=DE=BE=4,
所以四边形ABED的周长为16.
(2)当BE=ED=4时,x=4
当BE=BD=x时,由∠CDE=∠BDE,BC⊥DE,
利用轴对称的性质可得5-x=x,
x=2.5,
当BD=ED=4时,利用勾股定理得(125)2+(x2)2=42,
x=325.
答:(1)当x=4时,求四边形ABED的周长为16;(2)当x为325或2.5或4时,△BED是等腰三角形.
点评:此题主要考查勾股定理,轴对称的性质,等腰三角形的性质,平移的性质等多个知识点,此题涉及到的知识点较多,综合性较强,属于中档题.
展开全部
解:(1)将△ABC沿AC边所在直线向右平移x个单位,当x=4时,
即AD=4,又因为平移后的对应三角形为△DEF,
所以,AB=AD=DE=BE=4,
所以四边形ABED的周长为16.
(2)当BE=ED=4时,x=4;
当BE=BD=x时,由∠CDE=∠BDE,BC⊥DE,
利用轴对称的性质可得DC=BD=BE,即5-x=x,
x=2.5,
当BD=ED=4时,
过点D作DH⊥BE于H,
BH=x2,DH=AB•BCAC=125,
利用勾股定理得:DH2+BH2=BD2,
即(12/5)²+(x/2)²=4²,
x=32/5.
答:(1)当x=4时,求四边形ABED的周长为16;(2)当x为32/5或2.5或4时,△BED是等腰三角形.
望采纳
即AD=4,又因为平移后的对应三角形为△DEF,
所以,AB=AD=DE=BE=4,
所以四边形ABED的周长为16.
(2)当BE=ED=4时,x=4;
当BE=BD=x时,由∠CDE=∠BDE,BC⊥DE,
利用轴对称的性质可得DC=BD=BE,即5-x=x,
x=2.5,
当BD=ED=4时,
过点D作DH⊥BE于H,
BH=x2,DH=AB•BCAC=125,
利用勾股定理得:DH2+BH2=BD2,
即(12/5)²+(x/2)²=4²,
x=32/5.
答:(1)当x=4时,求四边形ABED的周长为16;(2)当x为32/5或2.5或4时,△BED是等腰三角形.
望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询