高二数列
展开全部
an = f(n) + f(n+1) = (-1)^(n-1)*n^2 + (-1)^n * (n+1)^2
= (-1)^n * ( (n+1)^2-n^2) = (-1)^n*(2n+1)
于是 a(2k-1)+a2k = (-1)^(2k-1)*(4k-1)+(-1)^2k*(4k+1) = 4k+1-4k+1 = 2
Sn分奇偶情况讨论
n=2k (偶数) S2k =(a1+a2)+(a3+a4) +..(a(2k-1)+a2k) = 2k ( k∈N* )
也就是说 n为偶数时 Sn = n
n=2k+1( 奇数) S(2k+1) = S2k + a(2k+1) = 2k-4k-3= -2k-3 ( k∈N)
也就是说 Sn = -n-2
= (-1)^n * ( (n+1)^2-n^2) = (-1)^n*(2n+1)
于是 a(2k-1)+a2k = (-1)^(2k-1)*(4k-1)+(-1)^2k*(4k+1) = 4k+1-4k+1 = 2
Sn分奇偶情况讨论
n=2k (偶数) S2k =(a1+a2)+(a3+a4) +..(a(2k-1)+a2k) = 2k ( k∈N* )
也就是说 n为偶数时 Sn = n
n=2k+1( 奇数) S(2k+1) = S2k + a(2k+1) = 2k-4k-3= -2k-3 ( k∈N)
也就是说 Sn = -n-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询