已知函数f(x)=2cosxsin(x+π/3)-√3/2 1.求函数f(x)的最小正周期T 2.若△ABC的三边a,b,c
2012-10-01
展开全部
1. f(x)=2cosxsin(x+π/3)-√3/2
= 2cosx(sinx cosπ/3 + cosx sinπ/3 ) -√3/2
= cosx sinx + √3cos²x -√3/2
= 1/2 sin2x + √3/2 cos2x
= sin(2x+π/3)
所以 T = 2π/2 = π
2.
cosB = (a²+ c² - b²)/(2ac) (注意到b²=ac)
= (a² + c²)/(2ac) - 1/2
<= 1 - 1/2 = 1/2
所以,B>= π/3
f(x) = sin(2x+π/3),
因为π > B>=π/3,所以 7π/3 > 2B+π/3 >= π
所以f(B)的最大值为 √3/2。
= 2cosx(sinx cosπ/3 + cosx sinπ/3 ) -√3/2
= cosx sinx + √3cos²x -√3/2
= 1/2 sin2x + √3/2 cos2x
= sin(2x+π/3)
所以 T = 2π/2 = π
2.
cosB = (a²+ c² - b²)/(2ac) (注意到b²=ac)
= (a² + c²)/(2ac) - 1/2
<= 1 - 1/2 = 1/2
所以,B>= π/3
f(x) = sin(2x+π/3),
因为π > B>=π/3,所以 7π/3 > 2B+π/3 >= π
所以f(B)的最大值为 √3/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询