设函数f(x)=根号下(x^2+1) -ax 当a≥1时,试判断函数f(x)在区间[1,正无穷)上的单调性,并加以证明

根号下是x^2+1... 根号下是x^2+1 展开
飘渺的绿梦2
2012-10-03 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4286
采纳率:84%
帮助的人:2106万
展开全部
方法一:
∵f(x)=√(x^2+1)-ax,
∴f′(x)=(x^2+1)′/[2√(x^2+1)]-a=x/√(x^2+1)-a。
∵x≧1,∴x^2<x^2+1,∴x<√(x^2+1),∴x/√(x^2+1)<1,而a≧1,∴f′(x)<0,
∴f(x)在区间[1,+∞)上是减函数。

方法二:
引入两个自变量:x1、x2,且x2>x1>1。
显然有:x2^2>x1^2,∴(x1x2)^2+x2^2>(x1x2)^2+x1^2,
∴x2^2(x1^2+1)>x1^2(x2^2+1),∴x2√(x1^2+1)>x1√(x2^2+1),
∴(x1^2+1)+2x2√(x1^2+1)+x2^2>(x2^2+1)+2x1√(x2^2+1)+x1^2,
∴[√(x1^2+1)+x2]^2>[√(x2^2+1)+x1]^2>1,
∴√(x1^2+1)+x2>√(x2^2+1)+x1,
∴x2-x1>√(x2^2+1)-√(x1^2+1)>0。

∵a≧1,∴a(x2-x1)≧x2-x1>√(x2^2+1)-√(x1^2+1),
∴√(x2^2+1)-√(x1^2+1)-a(x2-x1)<0。
∴f(x2)-f(x1)
=√(x2^2+1)-ax2-[√(x1^2+1)-ax2]
=√(x2^2+1)-√(x1^2+1)-a(x2-x1)<0。
∴f(x)在区间[1,+∞)上是减函数。
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式