已知函数f(x)=x+1/x+alnx的图象上任意一点的切线中,斜率为2的切线有且仅有一条.求
已知函数f(x)=x+1/x+alnx的图象上任意一点的切线中,斜率为2的切线有且仅有一条.(1)求实数a的值;(2)求函数g(x)=f(x)+2x的极值...
已知函数f(x)=x+1/x+alnx的图象上任意一点的切线中,斜率为2的切线有且仅有一条.(1)求实数a的值;(2)求函数g(x)=f(x)+2x的极值
展开
1个回答
展开全部
第一个问题:
∵f(x)=x+1/x+alnx,∴f′(x)=1-1/x^2+a/x。
依题意,有:1-1/x^2+a/x=2、且x有唯一的确定值。
由1-1/x^2+a/x=2,得:1/x^2-a/x+1=0。
∵方程1/x^2-a/x+1=0中的x唯一,∴该方程中的(1/x)唯一,∴需要:a^2-4=0,
∴a=2,或a=-2。
第二个问题:
一、当a=2时,f(x)=x+1/x+2lnx,∴g(x)=f(x)+2x=3x+1/x+2lnx,
∴g′(x)=3-1/x^2+2/x,∴g″(x)=2/x^3-2/x^2。
令g′(x)=0,得:3-1/x^2+2/x=0,∴1/x^2-2/x+3=0,∴(1/x-3)(1/x+1)=0。
考虑到函数的定义域,有:x>0,∴1/x=3。
此时,g″(x)=2/x^3-2/x^2=2×37-2×9>0,∴此时函数g(x)有极小值,
极小值=g(1/3)=3×(1/3)+3+3ln(1/3)=4-3ln3。
二、当a=-2时,f(x)=x+1/x-2lnx,∴g(x)=f(x)+2x=3x+1/x-2lnx,
∴g′(x)=3-1/x^2-2/x,∴g″(x)=2/x^3+2/x^2。
令g′(x)=0,得:3-1/x^2-2/x=0,∴1/x^2+2/x-3=0,∴(1/x+3)(1/x-1)=0。
考虑到函数的定义域,有:x>0,∴1/x=1。
此时,g″(x)=2/x^3+2/x^2=2+2>0,∴此时函数有极小值,
极小值=g(1)=3×1+1+2ln1=4。
∵f(x)=x+1/x+alnx,∴f′(x)=1-1/x^2+a/x。
依题意,有:1-1/x^2+a/x=2、且x有唯一的确定值。
由1-1/x^2+a/x=2,得:1/x^2-a/x+1=0。
∵方程1/x^2-a/x+1=0中的x唯一,∴该方程中的(1/x)唯一,∴需要:a^2-4=0,
∴a=2,或a=-2。
第二个问题:
一、当a=2时,f(x)=x+1/x+2lnx,∴g(x)=f(x)+2x=3x+1/x+2lnx,
∴g′(x)=3-1/x^2+2/x,∴g″(x)=2/x^3-2/x^2。
令g′(x)=0,得:3-1/x^2+2/x=0,∴1/x^2-2/x+3=0,∴(1/x-3)(1/x+1)=0。
考虑到函数的定义域,有:x>0,∴1/x=3。
此时,g″(x)=2/x^3-2/x^2=2×37-2×9>0,∴此时函数g(x)有极小值,
极小值=g(1/3)=3×(1/3)+3+3ln(1/3)=4-3ln3。
二、当a=-2时,f(x)=x+1/x-2lnx,∴g(x)=f(x)+2x=3x+1/x-2lnx,
∴g′(x)=3-1/x^2-2/x,∴g″(x)=2/x^3+2/x^2。
令g′(x)=0,得:3-1/x^2-2/x=0,∴1/x^2+2/x-3=0,∴(1/x+3)(1/x-1)=0。
考虑到函数的定义域,有:x>0,∴1/x=1。
此时,g″(x)=2/x^3+2/x^2=2+2>0,∴此时函数有极小值,
极小值=g(1)=3×1+1+2ln1=4。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询