已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P
已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线...
已知双曲线的中心在原点,焦点在x轴上,F1,F2分别为左右焦点,双曲线右支点上有一点P满足∠F1PF2=60°,△F1PF2的面积为2√3,又双曲线离心率为2,求该双曲线的方程
展开
展开全部
此题看似难,实际解法可以很巧妙。
在△F1PF2中,有F1F2²=PF1²+PF2²-2PF1·PF2·cos60=PF1²+PF2²-PF1·PF2=
(PF1-PF2)²+PF1·PF2,注意到F1F2=2c,PF1-PF2=2a,所以有4c²=4a²+PF1·PF2。
由三角形面积可求出PF1·PF2,S=0.5PF1·PF2·sin60°=2√3,所以有PF1·PF2=8,所以有
4c²=4a²+PF1·PF2=4c²=4a²+8,约简得c²=a²+2,又有e=c/a=2,解方程组可求得c²=8/3,a²=2/3,b²=c²-a²=2
在△F1PF2中,有F1F2²=PF1²+PF2²-2PF1·PF2·cos60=PF1²+PF2²-PF1·PF2=
(PF1-PF2)²+PF1·PF2,注意到F1F2=2c,PF1-PF2=2a,所以有4c²=4a²+PF1·PF2。
由三角形面积可求出PF1·PF2,S=0.5PF1·PF2·sin60°=2√3,所以有PF1·PF2=8,所以有
4c²=4a²+PF1·PF2=4c²=4a²+8,约简得c²=a²+2,又有e=c/a=2,解方程组可求得c²=8/3,a²=2/3,b²=c²-a²=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询