已知0<α<π/2<β<π,cos(β-π/4)=1/3,sin(α-β)=4/5
1个回答
展开全部
0<α<π/2<β<π,
∴-π<α-β<0,π/4<β-π/4<3π/4,
cos(β-π/4)=1/3,sin(α-β)=4/5,
∴sin(β-π/4)=2√2/3,cos(α-β)=土3/5.
(1)cosβ=cos(β-π/4+π/4)=1/3*1/√2-2√2/3*1/√2=(√2-4)/6,
sinβ=√[36-(√2-4)^2]/6=(4+√2)/6,
∴sin2β=2sinβcosβ=-7/9.
(2)cos(α+π/4)=cos[(α-β)+(β-π/4)+π/2]
=-sin[(α-β)+(β-π/4)]
=-[4/5*1/3土3/5*2√2/3]
=-(4土6√2)/15.
∴-π<α-β<0,π/4<β-π/4<3π/4,
cos(β-π/4)=1/3,sin(α-β)=4/5,
∴sin(β-π/4)=2√2/3,cos(α-β)=土3/5.
(1)cosβ=cos(β-π/4+π/4)=1/3*1/√2-2√2/3*1/√2=(√2-4)/6,
sinβ=√[36-(√2-4)^2]/6=(4+√2)/6,
∴sin2β=2sinβcosβ=-7/9.
(2)cos(α+π/4)=cos[(α-β)+(β-π/4)+π/2]
=-sin[(α-β)+(β-π/4)]
=-[4/5*1/3土3/5*2√2/3]
=-(4土6√2)/15.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询