6、在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于E,交BC于F,CM⊥AF于M,求证:EM=FM
3个回答
展开全部
证明:∵∠ACB=90°,CD⊥AB,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分线AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分线AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵∠ACB=90°,CD⊥AB,
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分线AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.
∴∠ADC=90°,
∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,
又∵∠BAC的平分线AF交CD于E,
∴∠DAE=∠CAE,
∴∠AED=∠CFE,
又∵∠AED=∠CEF,
∴∠CEF=∠CFE,
又∵CM⊥AF,
∴EM=FM.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询