若不等式|x|<1成立时,不等式[x-(a+1)][x-(a+4)]<0也成立,求实数a的取值范围
解答过程是:不等式|x|<1的解集为区间(-1,1)不等式[x-(a+1)][x-(a+4)]<0的解集为区间(a+1,a+4)由已知不等式|x|<1成立时,不等式[x-...
解答过程是:不等式|x|<1的解集为区间(-1,1)
不等式[x-(a+1)][x-(a+4)]<0的解集为区间(a+1,a+4)
由已知不等式|x|<1成立时,不等式[x-(a+1)][x-(a+4)]<0也成立,说明(-1,1)是(a+1,a+4)的子集。
所以,a+1≤-1,a+4≥1
-3≤a≤-2。我不明白为什么(-1,1)是(a+1,a+4)的子集,我觉得(a+1,a+4)是(-1,1)的子集,求解答。 展开
不等式[x-(a+1)][x-(a+4)]<0的解集为区间(a+1,a+4)
由已知不等式|x|<1成立时,不等式[x-(a+1)][x-(a+4)]<0也成立,说明(-1,1)是(a+1,a+4)的子集。
所以,a+1≤-1,a+4≥1
-3≤a≤-2。我不明白为什么(-1,1)是(a+1,a+4)的子集,我觉得(a+1,a+4)是(-1,1)的子集,求解答。 展开
4个回答
展开全部
若x∈A必然能推出x∈B,那么试问A包含于B还是B包含于A呢
同理而已
ok~~
同理而已
ok~~
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
|x|<1得-1<x<1
[x-(a+1)][x-(a+4)]<0得
a+1<x<a+4
∴a+1>=-1
a+4<=1
-3≤a≤-2
因为带了等号就是一样了
[x-(a+1)][x-(a+4)]<0得
a+1<x<a+4
∴a+1>=-1
a+4<=1
-3≤a≤-2
因为带了等号就是一样了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询