求函数极限,x趋于正无穷时,lim[sin(x+1)^(1/2)-sin(x-1)^(1/2)]
3个回答
展开全部
汗一个,推荐答案演绎了一次非常完美的夹闭,我也说说我的看法。
其实,本题,两个减项如此相似,首先想到的必然是拉格朗日中值定理啊
f(t)=sin[t^(1/2)],在[x-1,x+1]做拉格朗日中值定理。
f'(t)=[-1/2t^(1/2)]cos[t^(1/2)]
[sin(x+1)^(1/2)-sin(x-1)^(1/2)]=2f'(ξ)=[-1/2ξ^(1/2)]cos[ξ^(1/2)]
显然x趋于无穷,ξ也趋于无穷
-1/2ξ^(1/2)为无穷小,cos[ξ^(1/2)]有界
故极限为0
其实,本题,两个减项如此相似,首先想到的必然是拉格朗日中值定理啊
f(t)=sin[t^(1/2)],在[x-1,x+1]做拉格朗日中值定理。
f'(t)=[-1/2t^(1/2)]cos[t^(1/2)]
[sin(x+1)^(1/2)-sin(x-1)^(1/2)]=2f'(ξ)=[-1/2ξ^(1/2)]cos[ξ^(1/2)]
显然x趋于无穷,ξ也趋于无穷
-1/2ξ^(1/2)为无穷小,cos[ξ^(1/2)]有界
故极限为0
追问
值得说明的是。我大一新生。要不也不会问这么简单的问题,你说是吧?
追答
呵呵,拉格朗日中值定理,上学期就要学,如果你是新生,还过几天。
展开全部
解:∵lim(x->+∞){[√(x+1)-√(x-1)]/2}=lim(x->+∞){[(x+1)-(x-1)]/[2(√(x+1)+√(x-1))]} (分子有理化)
=lim(x->+∞){1/[√(x+1)+√(x-1)]}
=lim(x->+∞){(1/√x)/[√(1+1/x)+√(1-1/x)]} (分子分母同除√x)
=0/[√(1+0)+√(1-0)]
=0
∴lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}=sin【lim(x->+∞){[√(x+1)-√(x-1)]/2}】 (应用正弦函数的连续性)
=sin0
=0
∵│sin√(x+1)-sin√(x-1)│=2│cos[(√(x+1)+√(x-1))/2]│*│sin[(√(x+1)-√(x-1))/2]│
(应用正弦和差化积公式)
≤2│sin[(√(x+1)-√(x-1))/2]│ (应用│sinA│≤1)
∴-2sin[(√(x+1)-√(x-1))/2]≤sin√(x+1)-sin√(x-1)≤2sin[(√(x+1)-√(x-1))/2]
==>-2lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}≤lim(x->+∞)[sin√(x+1)-sin√(x-1)]≤2lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}
==>0≤lim(x->+∞)[sin√(x+1)-sin√(x-1)]≤0
故 由夹逼定理得lim(x->+∞)[sin√(x+1)-sin√(x-1)]=0。
=lim(x->+∞){1/[√(x+1)+√(x-1)]}
=lim(x->+∞){(1/√x)/[√(1+1/x)+√(1-1/x)]} (分子分母同除√x)
=0/[√(1+0)+√(1-0)]
=0
∴lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}=sin【lim(x->+∞){[√(x+1)-√(x-1)]/2}】 (应用正弦函数的连续性)
=sin0
=0
∵│sin√(x+1)-sin√(x-1)│=2│cos[(√(x+1)+√(x-1))/2]│*│sin[(√(x+1)-√(x-1))/2]│
(应用正弦和差化积公式)
≤2│sin[(√(x+1)-√(x-1))/2]│ (应用│sinA│≤1)
∴-2sin[(√(x+1)-√(x-1))/2]≤sin√(x+1)-sin√(x-1)≤2sin[(√(x+1)-√(x-1))/2]
==>-2lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}≤lim(x->+∞)[sin√(x+1)-sin√(x-1)]≤2lim(x->+∞){sin[(√(x+1)-√(x-1))/2]}
==>0≤lim(x->+∞)[sin√(x+1)-sin√(x-1)]≤0
故 由夹逼定理得lim(x->+∞)[sin√(x+1)-sin√(x-1)]=0。
追问
∴-2sin[(√(x+1)-√(x-1))/2]≤sin√(x+1)-sin√(x-1)≤2sin[(√(x+1)-√(x-1))/2]
绝对值怎么去掉?
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目有些问题,如sin(x+1)^(1/2)当sin(x+1)<0时在实数范围根本无意义!
或者你的题目是复变函数中的题?
或者你的题目是复变函数中的题?
追问
为什么无意义呢?
追答
我可能没理解对你的题目, 若是√sin(x+1), 就没意义,因为x→+∞时,sin(x+1)的值在正负之间来回震荡,负数开根在实数范围当然无意义。
若是sin√(x+1),就没问题了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询