如何证明以24为底25的对数与以25为底26的对数的大小
3个回答
展开全部
log(24)[25]:表示以24为底、25的对数。
log(24)[25]-log(25)[26]
=[lg(25)]/[lg(24)]-[lg(26)]/[lg(25)]
=[lg²(25)-lg(24)lg(26)]/[lg(24)lg(25)]
因为:lg24+lg26>2√[lg(24)lg(26)],则:
lg(24)lg(26)<(1/4)[lg(24)+lg(26)]²=(1/4)[lg(24×26)]²=(1/4)[lg(25²-1²)]²<(1/4)[lg(25²)]²=lg²(25)
即:lg(24)lg(26)-lg²(25)<0
则:
log(24)[25]>log(25)[26]
log(24)[25]-log(25)[26]
=[lg(25)]/[lg(24)]-[lg(26)]/[lg(25)]
=[lg²(25)-lg(24)lg(26)]/[lg(24)lg(25)]
因为:lg24+lg26>2√[lg(24)lg(26)],则:
lg(24)lg(26)<(1/4)[lg(24)+lg(26)]²=(1/4)[lg(24×26)]²=(1/4)[lg(25²-1²)]²<(1/4)[lg(25²)]²=lg²(25)
即:lg(24)lg(26)-lg²(25)<0
则:
log(24)[25]>log(25)[26]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询