在平面直角坐标系中,A(x1,0)B(0,x2)且x1>x2,x1+x2=1 x1·x2=-2.
(1.)求A,B(2)将AB绕某点旋转180°对应点C,D在y=k/x(x<0)上,四边形ABCD面积为20,求k...
(1.)求A,B(2)将AB绕某点旋转180°对应点 C,D在y=k/x(x<0)上,四边形ABCD面积为20,求k
展开
3个回答
展开全部
这道题叙述简单,实则复杂,确实是道考察综合知识的好题,个人认为分值应该是12分吧。
(1)求A,B
由已知条件x1+x2=1 x1·x2=-2可知,x1和x2是方程x^2-x-2=0的两个解,且给定了x1>x2,因此可解得x1=2,x2=-1
这一问也可以联立给出的x1+x2=1 x1·x2=-2来解,但出题者的意图应该是希望解题者利用方程的参数和方程的根之间的关系来求解
(2)将AB绕某点旋转180°对应点 C,D在y=k/x(x<0)上,四边形ABCD面积为20,求k
首先设A点旋转后对应的C点坐标(x3,k/x3),B点旋转后对应的D点(x4,k/x4),旋转中心E点(x5,y5)
由于AB两点是同时围绕同一点旋转了180°,由线段绕某点旋转的特性可知,旋转的结果应满足下列条件:
1,E点A、C和B、D的对称中心,即E点的坐标满足x5=(x3+2)/2=x4/2,y5=(k/x3)/2=(k/x4-1)/2
由这两个等式可得到关系式x3·x4=-2k,x4-x3=2
2,四边形ABCD是平行四边形(旋转了180°,否则不是),则由平行四边形的特性可知,△ABE的面积是ABCD面积的1/4,即有S△ABE=d*|AB|/2=5,其中d为E到线段AB(x-2y-2=0)的垂直距离(△ABE的高),|AB|为线段AB的长度(△ABE的底),|AB|=√5
由点到直线的距离公式可得d=|x5-2y5-2|/√5=|x4/2-2*[(k/x4-1)/2]-2|/√5
可得|x4/2-k/x4-1|=10,与x3·x4=-2k,x4-x3=2联立,
①当x4/2-k/x4-1=+10时,可解得x4=0或12,
∵D点在y=k/x(x<0)上,即x4应该<0,故这两个值都不符合题意,舍去
①当x4/2-k/x4-1=-10时,可解得x4=0或-8,舍去0,可得x4=-8
进一步即可解得k=-40
(1)求A,B
由已知条件x1+x2=1 x1·x2=-2可知,x1和x2是方程x^2-x-2=0的两个解,且给定了x1>x2,因此可解得x1=2,x2=-1
这一问也可以联立给出的x1+x2=1 x1·x2=-2来解,但出题者的意图应该是希望解题者利用方程的参数和方程的根之间的关系来求解
(2)将AB绕某点旋转180°对应点 C,D在y=k/x(x<0)上,四边形ABCD面积为20,求k
首先设A点旋转后对应的C点坐标(x3,k/x3),B点旋转后对应的D点(x4,k/x4),旋转中心E点(x5,y5)
由于AB两点是同时围绕同一点旋转了180°,由线段绕某点旋转的特性可知,旋转的结果应满足下列条件:
1,E点A、C和B、D的对称中心,即E点的坐标满足x5=(x3+2)/2=x4/2,y5=(k/x3)/2=(k/x4-1)/2
由这两个等式可得到关系式x3·x4=-2k,x4-x3=2
2,四边形ABCD是平行四边形(旋转了180°,否则不是),则由平行四边形的特性可知,△ABE的面积是ABCD面积的1/4,即有S△ABE=d*|AB|/2=5,其中d为E到线段AB(x-2y-2=0)的垂直距离(△ABE的高),|AB|为线段AB的长度(△ABE的底),|AB|=√5
由点到直线的距离公式可得d=|x5-2y5-2|/√5=|x4/2-2*[(k/x4-1)/2]-2|/√5
可得|x4/2-k/x4-1|=10,与x3·x4=-2k,x4-x3=2联立,
①当x4/2-k/x4-1=+10时,可解得x4=0或12,
∵D点在y=k/x(x<0)上,即x4应该<0,故这两个值都不符合题意,舍去
①当x4/2-k/x4-1=-10时,可解得x4=0或-8,舍去0,可得x4=-8
进一步即可解得k=-40
展开全部
解:(1)C(0,2),A(-1,0),B(3,0)
设AC:y=kx+b
则2=0+b
0=-k+b
所以k=b=2
所以AC:y=2x+2
同理BC:y=-2x/3+2
(2)两个三角形共底边AB
则高之比为3:1
所以yF=±6
所以F(-6,6)或(12,-6)
(3)在AC和BC的直线方程中,分别令y=m
解得D(m/2-1,m),E(3(2-m)/2,m)
若PD=PE,则P的横坐标=[(m/2-1)+3(2-m)/2]/2=2-m
此时P(2-m,0)
若PD=DE,设P(a,0),则(a-m/2+1)2+m2=(4-2m)2
所以a=±√(4-3m)(4-m) +m/2-1
同理PE=DE时可求出P
设AC:y=kx+b
则2=0+b
0=-k+b
所以k=b=2
所以AC:y=2x+2
同理BC:y=-2x/3+2
(2)两个三角形共底边AB
则高之比为3:1
所以yF=±6
所以F(-6,6)或(12,-6)
(3)在AC和BC的直线方程中,分别令y=m
解得D(m/2-1,m),E(3(2-m)/2,m)
若PD=PE,则P的横坐标=[(m/2-1)+3(2-m)/2]/2=2-m
此时P(2-m,0)
若PD=DE,设P(a,0),则(a-m/2+1)2+m2=(4-2m)2
所以a=±√(4-3m)(4-m) +m/2-1
同理PE=DE时可求出P
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询