高一指数函数题
设x=a﹢3a^(1/3)×b^(﹣2/3),y=b^﹣1﹢3a^(2/3)×b^(﹣1/3)。若a^(2/3)﹢b^(﹣2/3)=1,求(x﹢y)^(2/3)﹢(x﹣y...
设x=a﹢3a^(1/3)×b^(﹣2/3),y=b^﹣1﹢3a^(2/3)×b^(﹣1/3)。若a^(2/3)﹢b^(﹣2/3)=1,求(x﹢y)^(2/3)﹢(x﹣y)^(2/3)的值
展开
展开全部
∵x=a﹢3a^(1/3)×b^(﹣2/3),
y=b^﹣1﹢3a^(2/3)×b^(﹣1/3)。
∴x+y=a+b^(-1)+3a^(1/3)×b^(﹣2/3)+3a^(2/3)×b^(﹣1/3)
=[a^(1/3)]³+3a^(2/3)×b^(﹣1/3)+3a^(1/3)×b^(﹣2/3)++[b^(-1/3)]³
=[a^(1/3)+b(-1/3)]³
x-y=a-b^(-1)-3a^(1/3)×b^(﹣2/3)+3a^(2/3)×b^(﹣1/3)
=[a^(1/3)]³+3a^(2/3)×b^(﹣1/3)+3a^(1/3)×b^(﹣2/3)++[b^(-1/3)]³
=[a^(1/3)-b(-1/3)]³
又a^(2/3)﹢b^(﹣2/3)=1
∴ (x﹢y)^(2/3)﹢(x﹣y)^(2/3)
=[a^(1/3)+b(-1/3)]²+[a^(1/3)-b(-1/3)]²
=a^(2/3)﹢b^(﹣2/3)+2a^(1/3)+b(-1/3)+a^(2/3)﹢b^(﹣2/3)-2a^(1/3)+b(-1/3)
=2[a^(2/3)﹢b^(﹣2/3)]=2
不懂的地方追问,很希望帮到你
y=b^﹣1﹢3a^(2/3)×b^(﹣1/3)。
∴x+y=a+b^(-1)+3a^(1/3)×b^(﹣2/3)+3a^(2/3)×b^(﹣1/3)
=[a^(1/3)]³+3a^(2/3)×b^(﹣1/3)+3a^(1/3)×b^(﹣2/3)++[b^(-1/3)]³
=[a^(1/3)+b(-1/3)]³
x-y=a-b^(-1)-3a^(1/3)×b^(﹣2/3)+3a^(2/3)×b^(﹣1/3)
=[a^(1/3)]³+3a^(2/3)×b^(﹣1/3)+3a^(1/3)×b^(﹣2/3)++[b^(-1/3)]³
=[a^(1/3)-b(-1/3)]³
又a^(2/3)﹢b^(﹣2/3)=1
∴ (x﹢y)^(2/3)﹢(x﹣y)^(2/3)
=[a^(1/3)+b(-1/3)]²+[a^(1/3)-b(-1/3)]²
=a^(2/3)﹢b^(﹣2/3)+2a^(1/3)+b(-1/3)+a^(2/3)﹢b^(﹣2/3)-2a^(1/3)+b(-1/3)
=2[a^(2/3)﹢b^(﹣2/3)]=2
不懂的地方追问,很希望帮到你
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询