已知a,b,c分别是△ABC的三个内角A,B,C所对的边若△ABC面积S=√3/2,c=2,A=60
已知a,b,c分别是△ABC的三个内角A,B,C所对的边1,若△ABC面积S=√3/2,c=2,A=60º,求a,b的值2,若a=ccosB,且b=csinA,...
已知a,b,c分别是△ABC的三个内角A,B,C所对的边
1,若△ABC面积S=√3/2,c=2,A=60º,求a,b的值
2,若a=c cosB,且b=c sinA,试判断三角形abc 形状。
要过程! 展开
1,若△ABC面积S=√3/2,c=2,A=60º,求a,b的值
2,若a=c cosB,且b=c sinA,试判断三角形abc 形状。
要过程! 展开
5个回答
展开全部
1
∵△ABC面积S=√3/2,c=2,A=60º
又△ABC面积S=1/2bcsinA
∴1/2*b×2×sin60º=√3/2
∴b=1
根据余弦定理:
a²=b²+c²-2bccosA
=1+4-2×1×2×1/2
=3
∴a=√3
2
a=c cosB①,且b=c sinA②
①==> a=c*(a²+c²-b²)/(2ac)
==> 2a²=a²+c²-b²
==>a²+b²=c²
∴ΔABC是直角三角形,C=90º
① ②==>csinA=a ==> b=a
∴ΔABC是等腰三角形
∴ΔABC是等腰直角三角形
∵△ABC面积S=√3/2,c=2,A=60º
又△ABC面积S=1/2bcsinA
∴1/2*b×2×sin60º=√3/2
∴b=1
根据余弦定理:
a²=b²+c²-2bccosA
=1+4-2×1×2×1/2
=3
∴a=√3
2
a=c cosB①,且b=c sinA②
①==> a=c*(a²+c²-b²)/(2ac)
==> 2a²=a²+c²-b²
==>a²+b²=c²
∴ΔABC是直角三角形,C=90º
① ②==>csinA=a ==> b=a
∴ΔABC是等腰三角形
∴ΔABC是等腰直角三角形
展开全部
1、∵△ABC面积S=1/2bcsinA
又∵△ABC面积S=√3/2,A=60º
∴b=√3/2/sin60º=1
a=(b²+c²-2bccosA)^(1/2)
=(1+4-2×1×2×1/2)^(1/2)
=√3
2、∵ a=c cosB,b=c sinA
又∵cosB=(a²+c²-b²)/(2ac)
∴ 2a²=a²+c²-b²
a²+b²=c²
∴ΔABC是直角三角形,C=90º
∴csinA=a b=a
∴ΔABC是等腰三角形
∴ΔABC是等腰直角三角形
又∵△ABC面积S=√3/2,A=60º
∴b=√3/2/sin60º=1
a=(b²+c²-2bccosA)^(1/2)
=(1+4-2×1×2×1/2)^(1/2)
=√3
2、∵ a=c cosB,b=c sinA
又∵cosB=(a²+c²-b²)/(2ac)
∴ 2a²=a²+c²-b²
a²+b²=c²
∴ΔABC是直角三角形,C=90º
∴csinA=a b=a
∴ΔABC是等腰三角形
∴ΔABC是等腰直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、解:
由B点作BD垂直b于D,因角A=60,所以角ABD=30,AD=c/2=1,BD=√3。
又S=BD*AC/2=√3*b/2=√3/2,所以b=1,所以DC=1,a=BC=2
2、证:
作CD垂直AB于D,a=c cosB,且b=c sinA则:
b=c*(CD/b)
a=c*(BD/a)
所以:b^2/a^2=CD/BD=tanB
可得:a*cosA*a/sinA=b*b
所以a*cosA=b,a/sinA=b
所以△ABC为等腰直角三角形
由B点作BD垂直b于D,因角A=60,所以角ABD=30,AD=c/2=1,BD=√3。
又S=BD*AC/2=√3*b/2=√3/2,所以b=1,所以DC=1,a=BC=2
2、证:
作CD垂直AB于D,a=c cosB,且b=c sinA则:
b=c*(CD/b)
a=c*(BD/a)
所以:b^2/a^2=CD/BD=tanB
可得:a*cosA*a/sinA=b*b
所以a*cosA=b,a/sinA=b
所以△ABC为等腰直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:1)由s△=1/2bcsinA,得b=2s△/csinA=1,由a²=b²+c²-2bccosA=1+4-2=3,。所以a=根3.。 2),由cosB=(a²+c²-b²)/2ac,得(a²+c²-b²)/2ac=a/c,得a²+b²=c²。△ABC是以c为斜边的直角三角形,所以sinA=a/c。因为sinA=b/c,所以a=b。△ABC是等腰直角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
S = bcsinA / 2 = 2 - (bc)条2 =〔b 2 + C 2-2bccosA] - 〔b 2 + c的2-2BC = 2BC(1-COSA)
新浪=(1-COSA)。 TAN(A / 2)=(??1/cosA)/:新浪= 1/4。
新浪=(1-COSA)。 TAN(A / 2)=(??1/cosA)/:新浪= 1/4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询