1*2+2*3+3*4+...n*(n+1)= 要过程
2个回答
展开全部
1*2+2*3+3*4+...n*(n+1)
=1(1+1)+2(2+1)+3(3+1)+···+n(n+1)
=1²+1+2²+2+3²+3+····+n²+n
=(1+2+3+····+n)+(1²+2²+3²+···n²)
=(1+n)n/2+n(n+1)(2n+1)/6
=n(n+1)/2[1+(2n+1)/3]
=n(n+1)(n+2)/3
注:此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
=1(1+1)+2(2+1)+3(3+1)+···+n(n+1)
=1²+1+2²+2+3²+3+····+n²+n
=(1+2+3+····+n)+(1²+2²+3²+···n²)
=(1+n)n/2+n(n+1)(2n+1)/6
=n(n+1)/2[1+(2n+1)/3]
=n(n+1)(n+2)/3
注:此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询