如图,抛物线y=-x平方+bx+c与x轴交于点A,B两点,与y轴交于点C,点O为坐标原点
如图,抛物线y=-x平方+bx+c与x轴交于点A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=...
如图,抛物线y=-x平方+bx+c与x轴交于点A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
1. 求抛物线所对应的函数解析式
2.求△ABD的面积
3.将△AOC绕点C逆时针旋转90°.点A对应点为点G,问点G是否在该抛物线上?说明理由 展开
1. 求抛物线所对应的函数解析式
2.求△ABD的面积
3.将△AOC绕点C逆时针旋转90°.点A对应点为点G,问点G是否在该抛物线上?说明理由 展开
展开全部
解:(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得c=33=-4+2b+c,
解得b=2c=3,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=12×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得c=33=-4+2b+c,
解得b=2c=3,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=12×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上
展开全部
解:(1)由抛物线y=-x2+bx+c过点A(-1,0)及C(2,3)得,
-1-b+c=0-4+2b+c=3
,
解得
b=2c=3
,
故抛物线为y=-x2+2x+3
又设直线为y=kx+n过点A(-1,0)及C(2,3)得
-k+n=02k+n=3
,
解得
k=1n=1
故直线AC为y=x+1;
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),
故直线DN′的函数关系式为y=-
1
5
x+
21
5
,
当M(3,m)在直线DN′上时,MN+MD的值最小,
则m=-
1
5
×3+
21
5
=
18
5
;
(3)由(1)、(2)得D(1,4),B(1,2),
∵点E在直线AC上,
设E(x,x+1),
①如图2,当点E在线段AC上时,点F在点E上方,
则F(x,x+3),
∵F在抛物线上,
∴x+3=-x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,
则F(x,x-1)
由F在抛物线上
∴x-1=-x2+2x+3
解得x=
1-17
2
或x=
1+17
2
∴E(
1-17
2
,
3-17
2
)或(
1+17
2
,
3+17
2
)
综上,满足条件的点E的坐标为(0,1)、(
1-17
2
,
3-17
2
)或(
1+17
2
,
3+17
2
);
(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x+1)
=-x2+x+2
又∵S△APC=S△APQ+S△CPQ
=
1
2
PQ•AG
=
1
2
(-x2+x+2)×3
=-
3
2
(x-
1
2
)2+
27
8
∴面积的最大值为
27
8
.
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,
设Q(x,x+1),则P(x,-x2+2x+3)
又∵S△APC=S△APH+S直角梯形PHGC-S△AGC
=
1
2
(x+1)(-x2+2x+3)+
1
2
(-x2+2x+3+3)(2-x)-
1
2
×3×3
=-
3
2
x2+
3
2
x+3
=-
3
2
(x-
1
2
)2+
27
8
∴△APC的面积的最大值为
27
8
.
-1-b+c=0-4+2b+c=3
,
解得
b=2c=3
,
故抛物线为y=-x2+2x+3
又设直线为y=kx+n过点A(-1,0)及C(2,3)得
-k+n=02k+n=3
,
解得
k=1n=1
故直线AC为y=x+1;
(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),
故直线DN′的函数关系式为y=-
1
5
x+
21
5
,
当M(3,m)在直线DN′上时,MN+MD的值最小,
则m=-
1
5
×3+
21
5
=
18
5
;
(3)由(1)、(2)得D(1,4),B(1,2),
∵点E在直线AC上,
设E(x,x+1),
①如图2,当点E在线段AC上时,点F在点E上方,
则F(x,x+3),
∵F在抛物线上,
∴x+3=-x2+2x+3,
解得,x=0或x=1(舍去)
∴E(0,1);
②当点E在线段AC(或CA)延长线上时,点F在点E下方,
则F(x,x-1)
由F在抛物线上
∴x-1=-x2+2x+3
解得x=
1-17
2
或x=
1+17
2
∴E(
1-17
2
,
3-17
2
)或(
1+17
2
,
3+17
2
)
综上,满足条件的点E的坐标为(0,1)、(
1-17
2
,
3-17
2
)或(
1+17
2
,
3+17
2
);
(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,-x2+2x+3)
∴PQ=(-x2+2x+3)-(x+1)
=-x2+x+2
又∵S△APC=S△APQ+S△CPQ
=
1
2
PQ•AG
=
1
2
(-x2+x+2)×3
=-
3
2
(x-
1
2
)2+
27
8
∴面积的最大值为
27
8
.
方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,
设Q(x,x+1),则P(x,-x2+2x+3)
又∵S△APC=S△APH+S直角梯形PHGC-S△AGC
=
1
2
(x+1)(-x2+2x+3)+
1
2
(-x2+2x+3+3)(2-x)-
1
2
×3×3
=-
3
2
x2+
3
2
x+3
=-
3
2
(x-
1
2
)2+
27
8
∴△APC的面积的最大值为
27
8
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)将A(1,0),B(-3,0)代y=-x2+bx+c中得
-1+b+c=0-9-3b+c=0,(2分)
∴b=-2c=3,(3分)
∴抛物线解析式为:y=-x2-2x+3;(4分)
(2)存在.(5分)
理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称,
∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小,
∵y=-x2-2x+3,
∴C的坐标为:(0,3),
直线BC解析式为:y=x+3,(6分)
x=-1时,y=-1+3=2,
∴点Q的坐标是Q(-1,2);(7分)
(3)存在.(8分)
理由如下:如图,设P点(x,-x2-2x+3)(-3<x<0),
则PE=(-x2-2x+3)-(x+3)=-x2-3x,
∴S△BPC=12×PE×[x-(-3)]+12×PE×(0-x),
=12(x+3)(-x2-3x)+12(-x)(-x2-3x)
=-32(x2+3x),
=-32(x+32)2+278,
当x=-32时,△PBC的面积有最大值,最大值是278,
当x=-32时,-x2-2x+3=154,
∴点P坐标为(-32,154);(11分)
(4)在Rt△OBC中,BC=OB2+OC2=32+32=32,
运动t秒时,BM=43t,BN=32-2t,
①∠BMN是直角时,∵△MBN∽△OBC,
∴BMOB=BNBC,
即43t3=3
2-
2t 3
2,
解得t=97,
②∠BNM是直角时,∵△NBM∽△OBC,
∴BMBC=BNOB,
即43t3
2=3
2-
2t3,
解得t=95,
综上所述,t为97或95时,以B,M,N为顶点的三角形与△OBC相似.
-1+b+c=0-9-3b+c=0,(2分)
∴b=-2c=3,(3分)
∴抛物线解析式为:y=-x2-2x+3;(4分)
(2)存在.(5分)
理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称,
∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小,
∵y=-x2-2x+3,
∴C的坐标为:(0,3),
直线BC解析式为:y=x+3,(6分)
x=-1时,y=-1+3=2,
∴点Q的坐标是Q(-1,2);(7分)
(3)存在.(8分)
理由如下:如图,设P点(x,-x2-2x+3)(-3<x<0),
则PE=(-x2-2x+3)-(x+3)=-x2-3x,
∴S△BPC=12×PE×[x-(-3)]+12×PE×(0-x),
=12(x+3)(-x2-3x)+12(-x)(-x2-3x)
=-32(x2+3x),
=-32(x+32)2+278,
当x=-32时,△PBC的面积有最大值,最大值是278,
当x=-32时,-x2-2x+3=154,
∴点P坐标为(-32,154);(11分)
(4)在Rt△OBC中,BC=OB2+OC2=32+32=32,
运动t秒时,BM=43t,BN=32-2t,
①∠BMN是直角时,∵△MBN∽△OBC,
∴BMOB=BNBC,
即43t3=3
2-
2t 3
2,
解得t=97,
②∠BNM是直角时,∵△NBM∽△OBC,
∴BMBC=BNOB,
即43t3
2=3
2-
2t3,
解得t=95,
综上所述,t为97或95时,以B,M,N为顶点的三角形与△OBC相似.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询