在三角形ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm,试证明AB=AC.
4个回答
展开全部
∵BD^2+AD^2=AB^2
∴AD垂直BD(勾股定理)
又∵AD为中线
∴△ABC为等腰三角形
∴AB=AC
∴AD垂直BD(勾股定理)
又∵AD为中线
∴△ABC为等腰三角形
∴AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵AD是BC边上的中线且BC=10cm 、AD=12cm
∴CD=BD=5cm
在△ABD中,BD²+AD²=AB²
∴△ABC是直角三角形
∴∠ADB=∠CDA=90°
∴三角形CDA是直角三角形,在△CDA中
CD²+AD²=AC²
∴AC=13cm
∴AB=AC
∴CD=BD=5cm
在△ABD中,BD²+AD²=AB²
∴△ABC是直角三角形
∴∠ADB=∠CDA=90°
∴三角形CDA是直角三角形,在△CDA中
CD²+AD²=AC²
∴AC=13cm
∴AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来证,望采纳,因为D为BC中点,所以BD=5又因为AD等于12所以AB,AD,BD这三条边满足勾股定理,所以角ADB等于九十度,根据勾股定理,AC等于根号下5的平方加上12的平方等于13,所以AC等于AB等于13CM
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询