已知四面体S-ABC中,SA=SB=2,且SA⊥SB,BC=√5,AC=√3则该四面体外接球的表面积为

 我来答
帐号已注销
2014-06-05 · TA获得超过592个赞
知道小有建树答主
回答量:867
采纳率:0%
帮助的人:1285万
展开全部
外接球表面积是8π.
因为四面体的侧面SAB是等腰直角三角形,则边AB=2√2,于是侧面ABC也为直角三角形(由已知及勾股定理),直角顶点是点C.
所以,边AB是Rt△SAB与Rt△ABC的公共斜边,则AB中点O到三个顶点A,B,C,S的距离都等于√2,
即点O是四面体外接球的球心,进而得到其表面积为8π.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式