数1的3次方+2的3次方+3的3次方+4的3次方+5的3次方+..+2008的3次方的个位数是几?
4个回答
展开全部
数1的3次方+2的3次方+3的3次方+4的3次方+5的3次方+..+2008的3次方的个位数是
6
6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n^3
= n(n+1)(n+2) - 3n(n+1) +n
= (1/4)[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] -[n(n+1)(n+2)-(n-1)n(n+1)] +(1/2)[n(n+1) -(n-1)n]
1^3+2^3+...+n^3
= (1/4)n(n+1)(n+2)(n+3) -n(n+1)(n+2)+(1/2)n(n+1)
= (1/4)n(n+1) [(n+2)(n+3)-4(n+2)+2 ]
= (1/4)n(n+1) [n^2+n]
= [(1/2)n(n+1)]^2
n=2008
1^3+2^3+...+2008^3
= [(1/2)2008(2009)]^2
=4068434225296
个位数是=6
= n(n+1)(n+2) - 3n(n+1) +n
= (1/4)[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)] -[n(n+1)(n+2)-(n-1)n(n+1)] +(1/2)[n(n+1) -(n-1)n]
1^3+2^3+...+n^3
= (1/4)n(n+1)(n+2)(n+3) -n(n+1)(n+2)+(1/2)n(n+1)
= (1/4)n(n+1) [(n+2)(n+3)-4(n+2)+2 ]
= (1/4)n(n+1) [n^2+n]
= [(1/2)n(n+1)]^2
n=2008
1^3+2^3+...+2008^3
= [(1/2)2008(2009)]^2
=4068434225296
个位数是=6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询