已知函数f(x)=Asin(x+π/4),x属于R,且f(5π/12)=3/2
3个回答
展开全部
f(5π/12)=Asin(5π/12+π/4)
=Asin(2π/3)
=A * √3 /2, (√ 为根号)
=3/2
A=√3
f(θ)+f(-θ)=3/2
√3 sin(θ+π/4)+√3 sin(-θ+π/4)=3/2
sin(θ+π/4)+ sin(-θ+π/4)=√3 /2
2SIN(π/4)×COSθ=√3 /2
θ属于(0,π/2)
2× √2/2 ×COSθ= √3/2
COSθ=√6 /4
f(3/4π-θ)= √3sin(π/2 -θ)
=√3 [sin π/2×cosθ-cos π/2 ×sinθ] 和差角公式
=√3 cosθ
=3√2 /4
=Asin(2π/3)
=A * √3 /2, (√ 为根号)
=3/2
A=√3
f(θ)+f(-θ)=3/2
√3 sin(θ+π/4)+√3 sin(-θ+π/4)=3/2
sin(θ+π/4)+ sin(-θ+π/4)=√3 /2
2SIN(π/4)×COSθ=√3 /2
θ属于(0,π/2)
2× √2/2 ×COSθ= √3/2
COSθ=√6 /4
f(3/4π-θ)= √3sin(π/2 -θ)
=√3 [sin π/2×cosθ-cos π/2 ×sinθ] 和差角公式
=√3 cosθ
=3√2 /4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询