谁帮我解下这道数学题,高中应该学过,忘了啊.要详细的步骤哈,麻烦了
3个回答
展开全部
解:这是典型的等比数列求和。a(n+1)=an*[1/(r+1)]
令S = 1/(1+r)+ 1/(1+r)^2+ ······+1/(1+r)^n······································(1)
那么:S/(1+r) =1/(1+r)^2+·······+1/(1+r)^n+ 1/(1+r)^(n+1)·····················(2)
(2式表明和的乘积等于乘积的和。)
(1)-(2),得:S-S/(1+r)=1/(1+r)-1/(1+r)^n(中间项全部抵消)
即:S=(1+r)/r*[1/(1+r)-1/(1+r)^n]=1/r-1/[r(1+r)^(n-1)]
所以所求=A*S=A*{1/r-1/[r(1+r)^(n-1)]}
令S = 1/(1+r)+ 1/(1+r)^2+ ······+1/(1+r)^n······································(1)
那么:S/(1+r) =1/(1+r)^2+·······+1/(1+r)^n+ 1/(1+r)^(n+1)·····················(2)
(2式表明和的乘积等于乘积的和。)
(1)-(2),得:S-S/(1+r)=1/(1+r)-1/(1+r)^n(中间项全部抵消)
即:S=(1+r)/r*[1/(1+r)-1/(1+r)^n]=1/r-1/[r(1+r)^(n-1)]
所以所求=A*S=A*{1/r-1/[r(1+r)^(n-1)]}
展开全部
要分类讨论的
如果r=0 则原式=A*(1+1+1+······+1)=n*A
如果r≠0则
令S = 1/(1+r)+ 1/(1+r)^2+ ······+1/(1+r)^n······································(1)
那么:S/(1+r) =1/(1+r)^2+·······+1/(1+r)^n+ 1/(1+r)^(n+1)·····················(2)
(1)-(2),得:S-S/(1+r)=1/(1+r)-1/(1+r)^n
即:S=(1+r)/r*[1/(1+r)-1/(1+r)^n]=1/r-1/[r(1+r)^(n-1)]
原式=A*S=A*{1/r-1/[r(1+r)^(n-1)]}
如果r=0 则原式=A*(1+1+1+······+1)=n*A
如果r≠0则
令S = 1/(1+r)+ 1/(1+r)^2+ ······+1/(1+r)^n······································(1)
那么:S/(1+r) =1/(1+r)^2+·······+1/(1+r)^n+ 1/(1+r)^(n+1)·····················(2)
(1)-(2),得:S-S/(1+r)=1/(1+r)-1/(1+r)^n
即:S=(1+r)/r*[1/(1+r)-1/(1+r)^n]=1/r-1/[r(1+r)^(n-1)]
原式=A*S=A*{1/r-1/[r(1+r)^(n-1)]}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
带入等比数列求和公式即可,公式自行百度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询