设随机变量X与Y互相独立,且均服从区间 [0,1] 上的均匀分布,y服从参数为1的指数分布,求P(x>y)=?

 我来答
西禾学姐
高粉答主

2020-06-06 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1733
采纳率:100%
帮助的人:47.4万
展开全部

由已知,f(x)=1,(0<=x<=1),f(y)=e^(-y),(y>=0),Z大于0

那么F(z)=P(X+Y<z)

坐标轴上画出积分区间

即0<=z<1时,x积分区间为(0,z),y积分区间为(0,z-x)

z>=1时,x积分区间为(0,1),y积分区间为(0,z-x)

在以上区间对f(x)*f(y)=e^(-y)积分,有

0<=z<1时,F(z)=e^(-z)+z-1

z>=1时,F(z)=e^(-z)-e^(1-z)+1

求导,有

0<=z<1时,f(z)=1-e^(-z)

z>=1时,f(z)=e^(1-z)-e^(-z)

因此,Z的概率密度函数

f(z)=0,z<0

f(z)=1-e^(-z),0<=z<1

f(z)=e^(1-z)-e^(-z),z>=1时

(2)F(z))=P(-2lnX<z)=P(X>e^(-z/2))

当z<0时,F(z)=0

当z>=0时,对f(x)从e^(-z/2)到1积分,得F(z)=1-e^(-z/2)

求导,有

f(z)=e^(-z/2)/2

因此,Z的概率密度函数为

f(z)=0,z<0

f(z)=e^(-z/2)/2,z>=0

扩展资料

如果X是离散随机变量,具有概率质量函数p(x),那么X的期望值定义为

换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值的概率所加权。

我们也可以定义连续随机变量的期望值。如果X是具有概率密度函数f(x)的连续随机变量,那么X的期望就定义为


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式