已知实数a,b满足, a√(1-b)+b√(1-a)=1, 求证:a+b=1
展开全部
证明:
可设a²+b²=x.
把条件等式:
a√(1-b²)+b√(1-a²)=1两边平方,可得
a²(1-b²)+b²(1-a²)+2ab√[(1-a²)(1-b²)]=1
去括号,整理可得
2ab√[1+a²b²-(a²+b²)]=1+2a²b²-(a²+b²)
∴2ab√(1+a²b²-x)=1+2a²b²-x
上式两边平方,整理可得
4a²b²(1+a²b²-x)=1+4(a²b²)²+x²+4a²b²-2x-4xa²b²
整理可得
x²-2x+1=0
即(x-1)²=0
∴x=1
即a²+b²=1.
可设a²+b²=x.
把条件等式:
a√(1-b²)+b√(1-a²)=1两边平方,可得
a²(1-b²)+b²(1-a²)+2ab√[(1-a²)(1-b²)]=1
去括号,整理可得
2ab√[1+a²b²-(a²+b²)]=1+2a²b²-(a²+b²)
∴2ab√(1+a²b²-x)=1+2a²b²-x
上式两边平方,整理可得
4a²b²(1+a²b²-x)=1+4(a²b²)²+x²+4a²b²-2x-4xa²b²
整理可得
x²-2x+1=0
即(x-1)²=0
∴x=1
即a²+b²=1.
追问
佩服你的勇气。居然硬算过来了。厉害。。交个朋友吧,学霸。[发呆拍掌],点击[ http://pinyin.cn/e2372 ]查看表情
这题用柯西不等式或者向量也可以。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询