高等数学 求指点 求( n! / n^n )^( 1/n ) 的 极限。
网上的回答:Xn=(n!/n^n)^(1/n)两边取对数,lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))上式可看成f(x...
网上的回答:
Xn=(n!/n^n)^(1/n)
两边取对数,
lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))
上式可看成 f(x)=lnx 在[0,1]上的一个积分和。即对[0,1]
区间作n等分,每个小区间长1/n。
########## 我个人觉得下面这里不太对~~~,怎么是定积分?? 求高人指导~~
因此当n趋于无穷时,lnXn等于f(x)=lnx在[0,1]上的定积分。
lnx在[0,1]上的定积分为-1
所以 lnXn在n趋于无穷时的极限为-1。
由于 Xn=e^(lnXn),
于是 Xn在n趋于无穷时的极限值为1/e. 展开
Xn=(n!/n^n)^(1/n)
两边取对数,
lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))
上式可看成 f(x)=lnx 在[0,1]上的一个积分和。即对[0,1]
区间作n等分,每个小区间长1/n。
########## 我个人觉得下面这里不太对~~~,怎么是定积分?? 求高人指导~~
因此当n趋于无穷时,lnXn等于f(x)=lnx在[0,1]上的定积分。
lnx在[0,1]上的定积分为-1
所以 lnXn在n趋于无穷时的极限为-1。
由于 Xn=e^(lnXn),
于是 Xn在n趋于无穷时的极限值为1/e. 展开
5个回答
展开全部
这个做法是不严谨的
如果f(x)在[0,1]上Riemann可积,那么那个求和确实可以看作Riemann和
这里的问题在于lnx在[0,1]上不是Riemann可积的,不能直接把求和的极限转化为积分
如果f(x)在[0,1]上Riemann可积,那么那个求和确实可以看作Riemann和
这里的问题在于lnx在[0,1]上不是Riemann可积的,不能直接把求和的极限转化为积分
更多追问追答
追问
好的吧,话说我刚刚在看高数上。 貌似 这个情形 符合 (无界函数的反常积分 同济6上p257-258)【也可以使用 牛顿-莱布尼茨 公式】 ,这样的话,应该 证明就没太大问题了吧。
;再结合 这个答案:∫ [0,1] lnx dx=xlnx [0,1]-∫ [0,1] x*(1/x) dx=0-∫ [0,1] 1 dx=-1;因为lim (x趋于0+) xlnx=lim (x趋于0+) lnx/x^(-1)=lim (x趋于0+) -(1/x)/x^(-2)=lim (x趋于0+) -x=0 @电灯剑客 你觉得这样证明怎么样?
追答
我已经说了,这个求和不可以直接转化到∫ [0,1] lnx dx,无界函数的反常积分是由Riemann积分的极限来得到的,如果按Riemann和来看就是(Riemann和的极限)的极限,你不能随意的把两个极限运算交换。
我在评论里给你写了如何用积分来证明,你可以理解成这是对该方法的修正,但不代表原来的证明本身是合理的。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是定积分
因为你看积分和的点是1/n,2/n,,,n/n
是[0,1]上的点
所以那个加和就是逼近[0,1]上的定积分
因为你看积分和的点是1/n,2/n,,,n/n
是[0,1]上的点
所以那个加和就是逼近[0,1]上的定积分
追问
那积分区间怎么取?
追答
lnXn=(1/n)*(ln(1/n)+ln(2/n)+ln(3/n)+···+ln(n/n))
你看那些lnx的点
是1/n,2/n,...,n/n
令n->无穷就是从0到1
所以积分区间是0到1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
????????
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询