尺规作图难题 附答案

酷帅王
2012-10-21 · TA获得超过4656个赞
知道小有建树答主
回答量:270
采纳率:0%
帮助的人:251万
展开全部
1.把已知线段用尺规作图的方法平均分成三段
过线段的一个端点任意作一条射线(与已知线段的夹角最好小于90度),在这条射线上取三条相接的,长度相等的线段,将最后一条线段的端点与已知线段的另一个端点相连,我们设它为a,分别过刚才画的那条射线的剩下的两个点作a的平行线,与已知线段的两个交点就是它的三等分点了

(2)三等分角问题:把一个任意已知角三等分;
方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA
★作法二

  帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA

  ★作法三

  帕普斯(Pappus,约公元320年)方法,对于∠AOB,在它的两边上截取OA=OB.连结AB并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA

  ★作法四

  玫瑰线方法:交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA

(3)立方倍积问题:作一个立方体,使其体积为已知立方体体积的2倍;
 柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边。

  ★作法二

  门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得

  y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长。

  ★作法三

  阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长。

(4)化圆为方问题:作与已知圆等面积的正方形
作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O等积的正方形
更多追问追答
追问
先说明一下  我先初二   这还不算难啊       至少我可以做出来     (平行线截线段成比例)
最好是有我做不出来 不过能看懂的
追答
你的成绩怎么样
我在帮你找
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式