如图,点O是等边三角形ABC内的一点,∠AOB=130°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC
如图,点O是等边三角形ABC内的一点,∠AOB=130°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)判断△COD的形状,并加以说明...
如图,点O是等边三角形ABC内的一点,∠AOB=130°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)判断△COD的形状,并加以说明理由.(2)若AD=1,OC=2,OA=3时,求α的度数.(3)探究:当α为多少度时,△AOD是等腰三角形?
展开
1个回答
展开全部
证明:(1)∵△ADC≌△BOC,
∴CO=CD,
∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴∠DCO=60°,
∴△COD是等边三角形.
(2)∵AD=1,OC=
,OA=
∴OA2=AD2+OC2
∴△AOD是直角三角形
∴∠ADO=90°
∴α=360°-130°-90°=140°
(3)解:∠AOD=360°-∠AOB-∠α-∠COD=360°-130°-∠α-60°=170°-∠α,
∠ADO=∠ADC-∠CDO=∠α-60°,
∠OAD=180°-∠AOD-∠ADO=180°-(∠α-60°)-(170°-∠α)=70°,
若∠ADO=∠AOD,即∠α-60°=170°-∠α,
解得:∠α=115°;
若∠ADO=∠OAD,则∠α-60°=70°,
解得:∠α=130°;
若∠OAD=∠AOD,即70°=170°-∠α,
解得:∠α=100°;
即当α为100°、130°、115°时,△AOD为等腰三角形.
故答案为:(1)略(2)140°,(3)100°、130°、115°
∴CO=CD,
∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴∠DCO=60°,
∴△COD是等边三角形.
(2)∵AD=1,OC=
2 |
3 |
∴OA2=AD2+OC2
∴△AOD是直角三角形
∴∠ADO=90°
∴α=360°-130°-90°=140°
(3)解:∠AOD=360°-∠AOB-∠α-∠COD=360°-130°-∠α-60°=170°-∠α,
∠ADO=∠ADC-∠CDO=∠α-60°,
∠OAD=180°-∠AOD-∠ADO=180°-(∠α-60°)-(170°-∠α)=70°,
若∠ADO=∠AOD,即∠α-60°=170°-∠α,
解得:∠α=115°;
若∠ADO=∠OAD,则∠α-60°=70°,
解得:∠α=130°;
若∠OAD=∠AOD,即70°=170°-∠α,
解得:∠α=100°;
即当α为100°、130°、115°时,△AOD为等腰三角形.
故答案为:(1)略(2)140°,(3)100°、130°、115°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询